About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 363417, 13 pages
http://dx.doi.org/10.1155/2013/363417
Review Article

Border Malaria Associated with Multidrug Resistance on Thailand-Myanmar and Thailand-Cambodia Borders: Transmission Dynamic, Vulnerability, and Surveillance

1Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, 420/1 Rajvithi Road, Rajthewee, Bangkok 10400, Thailand
2Department of Clinic, Faculty of Veterinary Medicine, Mahanakorn University of Technology, 140 Cheum-Sampan Road, Nong-Chok, Bangkok 10530, Thailand
3Department of Fundamentals of Public Health, Faculty of Public Health, Burapha University, Chonburi 20131, Thailand
4Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
5Ministry of Public Health, Department of Disease Control, The 11th Regional Office of Disease Prevention and Control, Nakhon Si Thammarat 80000, Thailand

Received 19 April 2013; Accepted 6 June 2013

Academic Editor: Hajime Hisaeda

Copyright © 2013 Adisak Bhumiratana et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Sustainable Development Strategy of the Greater Mekong Sub-region (DRC—ROAP)http://www.rrcap.unep.org/nsds/uploadedfiles/file/gms/reference/SSDS%20GMS.pdf.
  2. ADB, “Toward sustainable and balanced development: strategy and action plan for the Greater Mekong Subregion North-South Economic Corridor,” Mimeographed Document, Asian Development Bank, Mandaluyong, Philippines, 2010.
  3. DAN, “The cross border economies of Cambodia, Laos, Thailand and Vietnam,” Mimeographed Document, Development Analysis Network, 2005, http://www.cdri.org.kh/webdata/download/dan/ddan4.pdf.
  4. J. Dore, “The governance of increasing Mekong regionalism,” Mimeographed Document, 2010, http://h2o.ablkomplet.cz/wp-content/uploads/2010/12/John_Dore__Mekong.pdf.
  5. O. Varis and T. Kajander, An Exploration into an Urbanization World: Interconnections of Water, Food, Poverty and Urbanization, p. 1–381, Aalto University, Espoo, Finland, 2006.
  6. ADB, “REG: sustainable tourism development project,” Mimeographed Document, Asian Development Bank, Mandaluyong, Philippines, 2008.
  7. I. O. M. Thailand, “Thailand migration report 2011: migration for development in Thailand: overview and tools for policymakers,” Mimeographed Document, International Organization for Migration, Bangkok, Thailand, 2011.
  8. “Emerging GMS HRD challenges and priorities for the GMS strategic framework 2012–2022,” in Proceedings of the 10th Meeting of GMS Working Group on Human Resource Development (WGHRD '10), Vientiane, Laos, May 2011, http://110.164.59.211/gmsinfo/images/stories/regional_cooperation/link_documents/capacity_building/WGHRD_10_Report%20_24%20June%202011.pdf.
  9. ADB, “Managing regional public goods: cross-border trade and investment, labor migration, and public health—part 1, Bangkok, Thailand, 15–21 June 2005,” Mimeographed Document Mandaluyong, Philippines, Asian Development BankPhilippines, 2005.
  10. ADB, “Transborder diseases in northern Thailand,” in Strategic Environmental Framework for the Greater Mekong Subregion: Integrating Development and Environment in the Transport and Water Resource Sectors. Volume IV: SEF Case Study Reports, pp. 45–48, Asian Development Bank, Mandaluyong, Philippines, 2002.
  11. WHO, “Malaria in the greater Mekong subregion: regional and country profiles,” Mimeographed Document, World Health Organization, New Delhi, India, 2010.
  12. Q. Cheng, D. E. Kyle, and M. L. Gatton, “Artemisinin resistance in Plasmodium falciparum a process linked to dormancy?” International Journal for Parasitology, Drugs, and Drug Resistance, vol. 2, pp. 249–255, 2012.
  13. WHO, “Global plan for artemisinin resistance containment (GPARC),” Mimeographed Document, World Health Organization, Geneva, Switzerland, 2011.
  14. WHO, “Strategic framework for artemisinin resistance containment in Myanmar (MARC) 2011–2015,” Mimeographed Document, World Health Organization, Geneva, Switzerland, 2011.
  15. WHO, “The status of drug-resistant malaria along the Thailand-Myanmar border,” Mimeographed Document, World Health Organization, Geneva, Switzerland, 2012.
  16. Joint assessment of the response to artemisinin resistance in the Greater Mekong Sub-Region conducted November 2011 to February 2012, http://malaria2012conference.com/cms/wp-content/uploads/2012/10/Summary-of-the-Joint-Assessment-of-the-Response-to-Artemisinin-Resistance.pdf.
  17. WHO, “Monitoring resistance of P. falciparum and P. vivax to anti-malarial drugs in the Greater Mekong Sub-region, Phuket, Thailand, 3–5 September 2007,” Mimeographed Document SEA-MAL-250, World Health Organization, New Delhi, India, 2008.
  18. A. Schapira, “Draft: strategic framework for artemisinin resistance containment in Myanmar (MARC) 2011–2005,” Mimeographed Document, 2011, http://www.whomyanmar.org/LinkFiles/Malaria_MARC_framework_April_2011.pdf.
  19. United Nations, “The millennium development goals report 2012,” Mimeographe Document, http://www.un.org/millenniumgoals/pdf/MDG%20Report%202012.pdf.
  20. A. Bhumiratana, P. Sorosjinda-Nunthawarasilp, W. Kaewwaen, P. Maneekan, and S. Pimnon, “Malaria-associated rubber plantations in Thailand,” Travel Medicine and Infectious Disease, vol. 11, no. 1, pp. 37–50, 2013.
  21. K. Thimasarn, “A strategic framework for rolling back malaria in the Mekong region,” Mimeographed Document, 2003, http://209.61.208.138/LinkFiles/Roll_Back_Malaria_MKRBM_Strategy_revised_Feb03.pdf.
  22. P. Satitvipawee, W. Wongkhang, S. Pattanasin, P. Hoithong, and A. Bhumiratana, “Predictors for malaria-association with rubber plantations in Thailand,” BMC Public Health, vol. 12, Article ID 1115, 16 pages, 2012.
  23. A. Bhumiratana, A. Intarapuk, S. Koyadun, P. Maneekan, and P. Sorosjinda-Nunthawarasilp, “Current bancroftian filariasis elimination on Thailand-Myanmar border,” ISRN Tropical Medicine, vol. 2013, Article ID 857935, 13 pages, 2013. View at Publisher · View at Google Scholar
  24. S. Koyadun and A. Bhumiratana, “Surveillance of imported bancroftian filariasis after two-year multiple-dose diethylcarbamazine treatment,” Southeast Asian Journal of Tropical Medicine and Public Health, vol. 36, no. 4, pp. 822–831, 2005. View at Scopus
  25. A. Bhumiratana, P. Pechgit, S. Koyadun, C. Siriaut, and P. Yongyuth, “Imported bancroftian filariasis: diethylcarbamazine response and benzimidazole susceptibility of Wuchereria bancrofti in dynamic cross-border migrant population targeted by the National Program to Eliminate Lymphatic Filariasis in South Thailand,” Acta Tropica, vol. 113, no. 2, pp. 121–128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Bhumiratana, S. Koyadun, M. Srisuphanunt, P. Satitvipawee, N. Limpairojn, and G. Gaewchaiyo, “Border and imported bancroftian filariases: baseline seroprevalence in sentinel populations exposed to infections with Wuchereria bancrofti and concomitant HIV at the start of diethylcarbamazine mass treatment in Thailand,” Southeast Asian Journal of Tropical Medicine and Public Health, vol. 36, no. 2, pp. 390–407, 2005. View at Scopus
  27. “Meeting report: consultation on the memorandum of understanding to reduce HIV vulnerability associated with population movement,” Bangkok, Thailand, July 2012, http://regionalcentrebangkok.undp.or.th/practices/hivaids/GMSMOUConsultationJul2012/GMSMOUConsultationMeetingReport11-13July2012.pdf.
  28. B. M. Greenwood, A. K. Bradley, A. M. Greenwood et al., “Mortality and morbidity from malaria among children in a rural area of The Gambia, West Africa,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 81, no. 3, pp. 478–486, 1987. View at Scopus
  29. J. Trape, G. Pison, M. Preziosi et al., “Impact of chloroquine resistance on malaria mortality,” Comptes Rendus de l'Academie des Sciences. Serie III, vol. 321, no. 8, pp. 689–697, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. J.-F. Trape, “The public health impact of chloroquine resistance in Africa,” The American Journal of Tropical Medicine and Hygiene, vol. 64, supplement 1-2, pp. 12–17, 2001. View at Scopus
  31. T. E. Wellems and C. V. Plowe, “Chloroquine-resistant malaria,” Journal of Infectious Diseases, vol. 184, no. 6, pp. 770–776, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Wongsrichanalai, J. Sirichaisinthop, J. J. Karwacki et al., “Drug resistant malaria on the Thai-Myanmar and Thai-Cambodian borders,” Southeast Asian Journal of Tropical Medicine and Public Health, vol. 32, no. 1, pp. 41–49, 2001. View at Scopus
  33. WHO, “The use of artemisinin and its derivatives as anti-malarial drugs. Report of a joint CTD/DMP/TDR informal consultation,” Mimeographed Document WHO/MAL/98.1086, World Health Organization, Geneva, Switzerland, 1998.
  34. P. T. Giao, T. Q. Binh, P. A. Kager, et al., “Artemisinin for treatment of uncomplicated falciparum malaria: is there a place for monotherapy?” The American Journal of Tropical Medicine and Hygiene, vol. 65, no. 6, pp. 690–695, 2001. View at Scopus
  35. WHO, “Report of the workshop to review and plan therapeutic efficacy studies to monitor P. falciparum and P. vivax resistance to antimalarial drugs in the Greater Mekong Sub-region, Mandalay, Myanmar, September 30–October 2, 2009,” Mimeographed Document SEA-MAL-263, World Health Organization, New Delhi, India, 2010.
  36. A. P. Alker, P. Lim, R. Sem et al., “PFMDR1 and in vivo resistance to artesunate-mefloquine in falciparum malaria on the Cambodian-Thai border,” The American Journal of Tropical Medicine and Hygiene, vol. 76, no. 4, pp. 641–647, 2007. View at Scopus
  37. R. N. Price, A. Uhlemann, A. Brockman et al., “Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number,” The Lancet, vol. 364, no. 9432, pp. 438–447, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. R. N. Price, C. Cassar, A. Brockman et al., “The pfmdr1 gene is associated with a multidrug-resistant phenotype in Plasmodium falciparum from the western border of Thailand,” Antimicrobial Agents and Chemotherapy, vol. 43, no. 12, pp. 2943–2949, 1999. View at Scopus
  39. P. Lim, A. P. Alker, N. Khim et al., “Pfmdr1 copy number and arteminisin derivatives combination therapy failure in falciparum malaria in Cambodia,” Malaria Journal, vol. 8, no. 1, article 11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. W. O. Rogers, R. Sem, T. Tero et al., “Failure of artesunate-mefloquine combination therapy for uncomplicated Plasmodium falciparum malaria in southern Cambodia,” Malaria Journal, vol. 8, no. 1, article 10, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. A. M. Dondorp, F. Nosten, P. Yi et al., “Artemisinin resistance in Plasmodium falciparum malaria,” The New England Journal of Medicine, vol. 361, no. 5, pp. 455–467, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. T. J. C. Anderson, S. Nair, S. Nkhorna et al., “High heritability of malaria parasite clearance rate indicates a genetic basis for artemisinin resistance in western Cambodia,” Journal of Infectious Diseases, vol. 201, no. 9, pp. 1326–1330, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Amaratunga, S. Sreng, S. Suon, et al., “Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study,” The Lancet Infectious Diseases, vol. 12, no. 11, pp. 851–858, 2012.
  44. C. Wongsrichanalai and S. R. Meshnick, “Declining artesunate-mefloquine efficacy against falciparum malaria on the Cambodia-Thailand border,” Emerging Infectious Diseases, vol. 14, no. 5, pp. 716–719, 2008. View at Scopus
  45. Aung-Pyae-Phyo, S. Nkhoma, K. Stepniewska et al., “Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study,” The Lancet, vol. 379, no. 9830, pp. 1960–1966, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. J. K. Baird, H. Basri, P. Purnomo et al., “Resistance to chloroquine by Plasmodium vivax in Irian Jaya, Indonesia,” The American Journal of Tropical Medicine and Hygiene, vol. 44, no. 5, pp. 547–555, 1991. View at Scopus
  47. G. S. Murphy, H. Basri, P. Purnomo et al., “Vivax malaria resistant to treatment and prophylaxis with chloroquine,” The Lancet, vol. 341, no. 8837, pp. 96–100, 1993. View at Publisher · View at Google Scholar · View at Scopus
  48. J. K. Baird, M. F. Sustriayu Nalim, H. Basri et al., “Survey of resistance to chloroquine by Plasmodium vivax in Indonesia,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 90, no. 4, pp. 409–411, 1996. View at Publisher · View at Google Scholar · View at Scopus
  49. Malar-Than, Myat-Phone-Kyaw, Aye-Yu-Soe, Khaing-Khaing-Gyi, Ma-Sabai, and Myaint-Oo, “Development of resistance to chloroquine by Plasmodium vivax in Myanmar,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 89, no. 3, pp. 307–308, 1995. View at Publisher · View at Google Scholar · View at Scopus
  50. G. T. Phan, P. J. de Vries, B. Q. Tran et al., “Artemisinin or chloroquine for blood stage Plasmodium vivax malaria in Vietnam,” Tropical Medicine and International Health, vol. 7, no. 10, pp. 858–864, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. V. K. Dua, P. K. Kar, and V. P. Sharma, “Chloroquine resistant Plasmodium vivax malaria in India,” Tropical Medicine and International Health, vol. 1, no. 6, pp. 816–819, 1996. View at Scopus
  52. E. J. Phillips, J. S. Keystone, and K. C. Kain, “Failure of combined chloroquine and high-dose primaquine therapy for Plasmodium vivax malaria acquired in Guyana, South America,” Clinical Infectious Diseases, vol. 23, no. 5, pp. 1171–1173, 1996. View at Scopus
  53. M. D. G. C. Alecrim, W. Alecrim, and V. Macedo, “Plasmodium vivax resistance to chloroquine (R2) and mefloquine (R3) in Brazilian Amazon region,” Revista da Sociedade Brasileira de Medicina Tropical, vol. 32, no. 1, pp. 67–68, 1999. View at Scopus
  54. J. Soto, J. Toledo, P. Gutierrez et al., “Plasmodium vivax clinically resistant to chloroquine in Colombia,” The American Journal of Tropical Medicine and Hygiene, vol. 65, no. 2, pp. 90–93, 2001. View at Scopus
  55. T. K. Ruebush II, J. Zegarra, J. Cairo et al., “Chloroquine-resistant Plasmodium vivax malaria in Peru,” The American Journal of Tropical Medicine and Hygiene, vol. 69, no. 5, pp. 548–552, 2003. View at Scopus
  56. K. Chotivanich, R. Udomsangpetch, W. Chierakul et al., “In vitro efficacy of antimalarial drugs against Plasmodium vivax on the western border of Thailand,” The American Journal of Tropical Medicine and Hygiene, vol. 70, no. 4, pp. 395–397, 2004. View at Scopus
  57. J. Guthmann, A. Pittet, A. Lesage et al., “Plasmodium vivax resistance to chloroquine in Dawei, southern Myanmar,” Tropical Medicine and International Health, vol. 13, no. 1, pp. 91–98, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Suwannarusk, B. Russell, M. Chachich, et al., “Chloroquine resistant Plasmodium vivax: in vitro characterization and association with molecular polymorphisms,” PLoS ONE, vol. 2, Article ID e1089, 9 pages, 2007. View at Publisher · View at Google Scholar
  59. I. H. Cheeseman, B. A. Miller, S. Nair et al., “A major genome region underlying artemisinin resistance in malaria,” Science, vol. 335, no. 6077, pp. 79–82, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. O. Miotto, J. Almagro-Garcia, M. Manske, et al., “Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia,” Nature Genetics, vol. 45, no. 6, pp. 648–655, 2013.
  61. S. Takala-Harrison, T. G. Clark, C. G. Jacob, et al., “Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 1, pp. 240–245, 2013.
  62. D. R. Forsdyke, “Selective pressures that decrease synonymous mutations in Plasmodium falciparum,” Trends in Parasitology, vol. 18, no. 9, pp. 411–418, 2002. View at Scopus
  63. M. Imwong, A. M. Dondorp, F. Nosten et al., “Exploring the contribution of candidate genes to artemisinin resistance in Plasmodium falciparum,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 7, pp. 2886–2892, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. E. A. Temu, I. Kimani, N. Tuno, H. Kawada, J. N. Minjas, and M. Takagi, “Monitoring chloroquine resistance using Plasmodium falciparum parasites isolated from wild mosquitoes in Tanzania,” The American Journal of Tropical Medicine and Hygiene, vol. 75, no. 6, pp. 1182–1187, 2006. View at Scopus
  65. A. Mohanty, S. Swain, D. V. Singh, N. Mahapatra, S. K. Kar, and R. K. Hazra, “A unique methodology for detecting the spread of chloroquine-resistant strains of Plasmodium falciparum, in previously unreported areas, by analyzing anophelines of malaria endemic zones of Orissa, India,” Infection, Genetics and Evolution, vol. 9, no. 4, pp. 462–467, 2009. View at Publisher · View at Google Scholar · View at Scopus