About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 368975, 12 pages
http://dx.doi.org/10.1155/2013/368975
Research Article

Genome-Wide Analysis of Human MicroRNA Stability

1Department of Cell Biology, Stem Cell Research Center, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing 100191, China
2Department of Integrated Chinese and Western Medicine, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing 100191, China
3Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing 100191, China
4MOE Key Lab of Molecular Cardiovascular Science, Peking University, 38 Xueyuan Road, Beijing 100191, China
5Department of Biomedical Informatics, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing 100191, China

Received 18 July 2013; Accepted 26 August 2013

Academic Editor: Edwin Wang

Copyright © 2013 Yang Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Ambros, “The functions of animal microRNAs,” Nature, vol. 431, no. 7006, pp. 350–355, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Griffiths-Jones, “The microRNA registry,” Nucleic Acids Research, vol. 32, database issue, pp. D109–D111, 2004. View at Scopus
  3. L. Salmena, L. Poliseno, Y. Tay, L. Kats, and P. P. Pandolfi, “A ceRNA hypothesis: the rosetta stone of a hidden RNA language?” Cell, vol. 146, no. 3, pp. 353–358, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Esquela-Kerscher and F. J. Slack, “Oncomirs—microRNAs with a role in cancer,” Nature Reviews Cancer, vol. 6, no. 4, pp. 259–269, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M. V. G. Latronico, D. Catalucci, and G. Condorelli, “Emerging role of microRNAs in cardiovascular biology,” Circulation Research, vol. 101, no. 12, pp. 1225–1236, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Xu, Y. Lu, Z. Pan et al., “The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes,” Journal of Cell Science, vol. 120, part 17, pp. 3045–3052, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Xiao and K. Rajewsky, “MicroRNA control in the immune system: basic principles,” Cell, vol. 136, no. 1, pp. 26–36, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. E. E. Creemers, A. J. Tijsen, and Y. M. Pinto, “Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease?” Circulation Research, vol. 110, no. 3, pp. 483–495, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Li, Y. Liu, X. Xin et al., “Evidence for positive selection on a number of microRNA regulatory interactions during recent human evolution,” PLoS Genetics, vol. 8, no. 3, Article ID e1002578, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Bhartiya, S. V. Laddha, A. Mukhopadhyay, and V. Scaria, “miRvar: a comprehensive database for genomic variations in microRNAs,” Human Mutation, vol. 32, no. 6, pp. E2226–E2245, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Lu, Q. Zhang, M. Deng et al., “An analysis of human microRNA and disease associations,” PLoS ONE, vol. 3, no. 10, Article ID e3420, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. L. V. Sharova, A. A. Sharov, T. Nedorezov, Y. Piao, N. Shaik, and M. S. H. Ko, “Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells,” DNA Research, vol. 16, no. 1, pp. 45–58, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Yang, E. van Nimwegen, M. Zavolan et al., “Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes,” Genome Research, vol. 13, no. 8, pp. 1863–1872, 2003. View at Scopus
  14. M. Rabani, J. Z. Levin, L. Fan et al., “Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells,” Nature Biotechnology, vol. 29, no. 5, pp. 436–442, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Schwanhüusser, D. Busse, N. Li et al., “Global quantification of mammalian gene expression control,” Nature, vol. 473, no. 7347, pp. 337–342, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. C. C. Friedel, L. Dölken, Z. Ruzsics, U. H. Koszinowski, and R. Zimmer, “Conserved principles of mammalian transcriptional regulation revealed by RNA half-life,” Nucleic Acids Research, vol. 37, no. 17, pp. e115–e115, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Raghavan, R. L. Ogilvie, C. Reilly et al., “Genome-wide analysis of mRNA decay in resting and activated primary human T lymphocytes,” Nucleic Acids Research, vol. 30, no. 24, pp. 5529–5538, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Narsai, K. A. Howell, A. H. Millar, N. O'Toole, I. Small, and J. Whelan, “Genome-wide analysis of mRNA decay rates and their determinants in Arabidopsis thaliana,” Plant Cell, vol. 19, no. 11, pp. 3418–3436, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. H.-C. S. Yen, Q. Xu, D. M. Chou, Z. Zhao, and S. J. Elledge, “Global protein stability profiling in mammalian cells,” Science, vol. 322, no. 5903, pp. 918–923, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. B. Clark, R. L. Johnston, M. Inostroza-Ponta et al., “Genome-wide analysis of long noncoding RNA stability,” Genome Research, vol. 22, no. 5, pp. 885–898, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Tani, R. Mizutani, K. A. Salam et al., “Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals,” Genome Research, vol. 22, no. 5, pp. 947–956, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Wang and E. Purisima, “Network motifs are enriched with transcription factors whose transcripts have short half-lives,” Trends in Genetics, vol. 21, no. 9, pp. 492–495, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Ruegger and H. Grosshans, “MicroRNA turnover: when, how, and why,” Trends in Biochemical Sciences, vol. 37, no. 10, pp. 436–446, 2012. View at Publisher · View at Google Scholar
  24. V. Ramachandran and X. Chen, “Degradation of microRNAs by a family of exoribonucleases in Arabidopsis,” Science, vol. 321, no. 5895, pp. 1490–1492, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Chatterjee and H. Großhans, “Active turnover modulates mature microRNA activity in Caenorhabditis elegans,” Nature, vol. 461, no. 7263, pp. 546–549, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. H.-W. Hwang, E. A. Wentzel, and J. T. Mendell, “A hexanucleotide element directs microRNA nuclear import,” Science, vol. 315, no. 5808, pp. 97–100, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. P. Gantier, C. E. McCoy, I. Rusinova et al., “Analysis of microRNA turnover in mammalian cells following Dicer1 ablation,” Nucleic Acids Research, vol. 39, no. 13, pp. 5692–5703, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Krol, V. Busskamp, I. Markiewicz et al., “Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs,” Cell, vol. 141, no. 4, pp. 618–631, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. Zhang, Y. W. Qin, G. Brewer, and Q. Jing, “MicroRNA degradation and turnover: regulating the regulators,” Wiley Interdisciplinary Review: RNA, vol. 3, no. 4, pp. 593–600, 2012.
  30. C. Xu, M. S. Inokuma, J. Denham et al., “Feeder-free growth of undifferentiated human embryonic stem cells,” Nature Biotechnology, vol. 19, no. 10, pp. 971–974, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Li, J. Xu, Y. Bai et al., “Isolation and characterization of neural stem cells from human fetal striatum,” Biochemical and Biophysical Research Communications, vol. 326, no. 2, pp. 425–434, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. G. L. Papadopoulos, M. Reczko, V. A. Simossis, P. Sethupathy, and A. G. Hatzigeorgiou, “The database of experimentally supported targets: a functional update of TarBase,” Nucleic Acids Research, vol. 37, no. 1, pp. D155–D158, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Xiao, Z. Zuo, G. Cai, S. Kang, X. Gao, and T. Li, “miRecords: an integrated resource for microRNA-target interactions,” Nucleic Acids Research, vol. 37, no. 1, pp. D105–D110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Wang, M. Lu, C. Qiu, and Q. Cui, “TransmiR: a transcription factor-microRNA regulation database,” Nucleic Acids Research, vol. 38, no. 1, pp. D119–D122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Wang, C. Qiu, H. Zhang, J. Wang, Q. Cui, and Y. Yin, “Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: from functions to targets,” PLoS ONE, vol. 5, no. 9, Article ID e13067, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Qiu, G. Chen, and Q. Cui, “Towards the understanding of microRNA and environmental factor interactions and their relationships to human diseases,” Scientific Reports, vol. 2, article 318, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. Q. Yang, C. Qiu, J. Yang, Q. Wu, and Q. Cui, “Mirenvironment database: providing a bridge for micrornas, environmental factors and phenotypes,” Bioinformatics, vol. 27, no. 23, pp. 3329–3330, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Lu, B. Shi, J. Wang, Q. Cao, and Q. Cui, “TAM: a method for enrichment and depletion analysis of a microRNA category in a list of microRNAs,” BMC Bioinformatics, vol. 11, article 419, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster analysis and display of genome-wide expression patterns,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 25, pp. 14863–14868, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Pál, B. Papp, and M. J. Lercher, “An integrated view of protein evolution,” Nature Reviews Genetics, vol. 7, no. 5, pp. 337–348, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Bakheet, M. Frevel, B. R. G. Williams, W. Greer, and K. S. A. Khabar, “ARED: human AU-rich element-containing mRNA database reveals an unexpectedly diverse functional repertoire of encoded proteins,” Nucleic Acids Research, vol. 29, no. 1, pp. 246–254, 2001. View at Scopus
  42. S. N. Bhattacharyya, R. Habermacher, U. Martine, E. I. Closs, and W. Filipowicz, “Relief of microRNA-mediated translational repression in human cells subjected to stress,” Cell, vol. 125, no. 6, pp. 1111–1124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Gatfield, G. Le Martelot, C. E. Vejnar et al., “Integration of microRNA miR-122 in hepatic circadian gene expression,” Genes and Development, vol. 23, no. 11, pp. 1313–1326, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. I. Heo, C. Joo, Y.-K. Kim et al., “TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation,” Cell, vol. 138, no. 4, pp. 696–708, 2009. View at Publisher · View at Google Scholar · View at Scopus