About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 371058, 9 pages
http://dx.doi.org/10.1155/2013/371058
Research Article

Kinetics of Molybdenum Reduction to Molybdenum Blue by Bacillus sp. Strain A.rzi

1Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
2Department of Environmental Science, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
3Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Received 14 September 2013; Accepted 28 October 2013

Academic Editor: Kannan Pakshirajan

Copyright © 2013 A. R. Othman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. K. Katnoria, S. Arora, R. Bhardwaj, and A. Nagpal, “Evaluation of genotoxic potential of industrial waste contaminated soil extracts of Amritsar, India,” Journal of Environmental Biology, vol. 32, no. 3, pp. 363–367, 2011. View at Scopus
  2. M. Y. Shukor, N. A. Bakar, A. R. Othman, I. Yunus, N. A. Shamaan, and M. A. Syed, “Development of an inhibitive enzyme assay for copper,” Journal of Environmental Biology, vol. 30, no. 1, pp. 39–44, 2009. View at Scopus
  3. M. Alina, A. Azrina, A. S. M. Yunus, S. M. Zakiuddin, H. M. I. Effendi, and R. M. Rizal, “Heavy metals (mercury, arsenic, cadmium, plumbum) in selected marine fish and shellfish along the straits of Malacca,” International Food Research Journal, vol. 19, no. 1, pp. 135–140, 2012. View at Scopus
  4. G. K. Davis, “Molybdenum,” in Metals and Their Compounds in the Environment: Occurrence, Analysis and Biological Relevance, E. Merian, Ed., pp. 1089–1100, VCH Weinheim, New York, NY, USA, 1991.
  5. R. B. King, M. Long, and J. bK. Sheldon, Practical Environmental Bioremediation: The Field Guide, Lewis Publisher, Boca Raton, Fla, USA, 1992.
  6. DOE, Malaysia Environmental Quality Report 2006, Department of Environment, Ministry of Natural Resources and Environment, Putrajaya, Malaysia, 2007.
  7. L. T. Fairhall, R. C. Dunn, N. E. Sharpless, and E. A. Pritchard, The Toxicity of Molybdenum, United States Public Health Service, Public Health Bulletin, 1945.
  8. E. J. Underwood, “Environmental sources of heavy metals and their toxicity to man and animals,” Progress in Water Technology, vol. 11, no. 4-5, pp. 33–45, 1979. View at Scopus
  9. F. S. Yong, “Mamut copper mine—the untold story. The national seminar on the Malaysian minerals industry,” in Minerals: Underpinning Yesterday's Needs, Today's Development and Tomorrow's Growth, Venue, Sabah, Malaysia, 2000.
  10. R. Z. Sayyed and S. B. Chincholkar, “Growth and siderophores production in Alcaligenes faecalis is regulated by metal ions,” Indian Journal of Microbiology, vol. 50, no. 2, pp. 179–182, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Capaldi and B. Proskauer, “Beiträge zur Kenntnis der Säurebildung bei Typhusbacillen und Bacterium coli,” Zeitschrift für Hygiene und Infectionskrankheiten, vol. 23, no. 3, pp. 452–474, 1896. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Jan, “La reduction biologique du molybdate d'ammonium par les bactéries du genre Serratia,” Bulletin des Sciences Pharmacologiques, vol. 46, pp. 336–339, 1939.
  13. C. A. Woolfolk and H. R. Whiteley, “Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements,” Journal of Bacteriology, vol. 84, pp. 647–658, 1962. View at Scopus
  14. E. M. Bautista and M. Alexander, “Reduction of inorganic compounds by soil microorganisms,” Soil Science Society of America Journal, vol. 36, pp. 918–920, 1972.
  15. A. M. Campbell, A. D. Campillo-Campbell, and D. B. Villaret, “Molybdate reduction by Escherichia coli K-12 and its chl mutants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 1, pp. 227–231, 1985. View at Scopus
  16. T. Sugio, Y. Tsujita, T. Katagiri, K. Inagaki, and T. Tano, “Reduction of Mo6+ with elemental sulfur by Thiobacillus ferrooxidans,” Journal of Bacteriology, vol. 170, no. 12, pp. 5956–5959, 1988. View at Scopus
  17. B. Ghani, M. Takai, N. Z. Hisham et al., “Isolation and characterization of a Mo6+-reducing bacterium,” Applied and Environmental Microbiology, vol. 59, no. 4, pp. 1176–1180, 1993. View at Scopus
  18. M. Y. Shukor, S. H. M. Habib, M. F. A. Rahman et al., “Hexavalent molybdenum reduction to molybdenum blue by S. Marcescens strain Dr. Y6,” Applied Biochemistry and Biotechnology, vol. 149, no. 1, pp. 33–43, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Y. Shukor, M. F. Rahman, Z. Suhaili, N. A. Shamaan, and M. A. Syed, “Bacterial reduction of hexavalent molybdenum to molybdenum blue,” World Journal of Microbiology and Biotechnology, vol. 25, no. 7, pp. 1225–1234, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Y. Shukor, M. F. Rahman, N. A. Shamaan, and M. S. Syed, “Reduction of molybdate to molybdenum blue by Enterobacter sp. strain Dr.Y13,” Journal of Basic Microbiology, vol. 49, supplement 1, pp. S43–S54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. S. M. Yunus, H. M. Hamim, O. M. Anas, S. N. Aripin, and S. M. Arif, “Mo (VI) reduction to molybdenum blue by Serratia marcescens strain Dr. Y9,” Polish Journal of Microbiology, vol. 58, no. 2, pp. 141–147, 2009. View at Scopus
  22. M. F. A. Rahman, M. Y. Shukor, Z. Suhaili, S. Mustafa, N. A. Shamaan, and M. A. Syed, “Reduction of Mo(VI) by the bacterium Serratia sp. strain DRY5,” Journal of Environmental Biology, vol. 30, no. 1, pp. 65–72, 2009. View at Scopus
  23. M. Y. Shukor, M. F. Rahman, Z. Suhaili, N. A. Shamaan, and M. A. Syed, “Hexavalent molybdenum reduction to Mo-blue by Acinetobacter calcoaceticus,” Folia Microbiologica, vol. 55, no. 2, pp. 137–143, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Y. Shukor, S. A. Ahmad, M. M. M. Nadzir, M. P. Abdullah, N. A. Shamaan, and M. A. Syed, “Molybdate reduction by Pseudomonas sp. strain DRY2,” Journal of Applied Microbiology, vol. 108, no. 6, pp. 2050–2058, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. H. K. Lim, M. A. Syed, and M. Y. Shukor, “Reduction of molybdate to molybdenum blue by Klebsiella sp. strain hkeem,” Journal of Basic Microbiology, vol. 52, no. 3, pp. 296–305, 2012. View at Publisher · View at Google Scholar
  26. C. Neunhäuserer, M. Berreck, and H. Insam, “Remediation of soils contaminated with molybdenum using soil amendments and phytoremediation,” Water, Air, and Soil Pollution, vol. 128, no. 1-2, pp. 85–96, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Mohandass, P. Rout, S. Jiwal, and C. Sasikala, “Biodegradation of benzo[a]pyrene by the mixed culture of Bacillus cereus and Bacillus vireti isolated from the petrochemical industry,” Journal of Environmental Biology, vol. 33, no. 6, pp. 985–989, 2012.
  28. R. Devereux and S. S. Wilkinson, “Amplification of ribosomal RNA sequences,” in Molecular Microbial Ecology Manual, A. D. L. Akkermans, J. D. van Elsas, and F. J. de Bruijn, Eds., pp. 1–17, Kluwer Academic, Dodrecht, The Netherlands, 2nd edition, 2004.
  29. J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,” Nucleic Acids Research, vol. 22, no. 22, pp. 4673–4680, 1994. View at Scopus
  30. T. H. Jukes and C. R. Cantor, “Evolution of protein molecules,” in Mammalian Protein Metabolism, H. N. Munro, Ed., pp. 21–132, Academic Press, New York, NY, USA, 1969.
  31. N. Saitou and M. Nei, “The neighbor-joining method: a new method for reconstructing phylogenetic trees,” Molecular Biology and Evolution, vol. 4, no. 4, pp. 406–425, 1987. View at Scopus
  32. J. Felsenstein, “Confidence limits on phylogenies: an approach using the bootstrap,” Evolution, vol. 39, no. 4, pp. 783–791, 1985. View at Publisher · View at Google Scholar
  33. T. Margush and F. R. McMorris, “Consensus n-trees,” Bulletin of Mathematical Biology, vol. 43, no. 2, pp. 239–244, 1981. View at Publisher · View at Google Scholar · View at Scopus
  34. R. D. M. Page, “TreeView: an application to display phylogenetic trees on personal computers,” Computer Applications in the Biosciences, vol. 12, no. 4, pp. 357–358, 1996. View at Scopus
  35. M. Y. Shukor, M. F. Rahman, N. A. Shamaan, C. H. Lee, M. I. A. Karim, and M. A. Syed, “An improved enzyme assay for molybdenum-reducing activity in bacteria,” Applied Biochemistry and Biotechnology, vol. 144, no. 3, pp. 293–300, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Y. Shukor, N. A. Shamaan, M. A. Syed, C. H. Lee, and M. I. A. Karim, “Characterization and quantification of molybdenum blue production in Enterobacter cloacae strain 48 using 12-molybdophosphate as the reference compound,” Asia Pacific Journal of Molecular Biology and Biotechnology, vol. 8, pp. 166–172, 2000.
  37. R. M. C. Dawson, D. C. Elliot, and W. H. Elliot, Eds., Data for Biochemical Research, Clarendon Press, Oxford, UK, 1969.
  38. J. Monod, “The growth of bacterial cultures,” Annual Review of Microbiology, vol. 3, pp. 371–394, 1949. View at Publisher · View at Google Scholar
  39. J. B. S. Haldane, Enzymes, Longman Green, London, UK, 1930.
  40. A. Mulchandani, J. H. T. Luong, and C. Groom, “Substrate inhibition kinetics for microbial growth and synthesis of poly-β-hydroxybutyric acid by Alcaligenes eutrophus ATCC 17697,” Applied Microbiology and Biotechnology, vol. 30, no. 1, pp. 11–17, 1989. View at Publisher · View at Google Scholar · View at Scopus
  41. J. D. Hem, “Chemical factors that influence the availability of iron and manganese in aqueous solution,” Geological Society of America Bulletin, vol. 83, pp. 443–450, 1972.
  42. M. Y. Shukor, H. Adam, K. Ithnin, I. Yunus, N. A. Shamaan, and A. Syed, “Molybdate reduction to molybdenum blue in microbe proceeds via a phosphomolybdate intermediate,” Journal of Biological Sciences, vol. 7, no. 8, pp. 1448–1452, 2007. View at Scopus
  43. D. D. Runnells, D. S. Kaback, and E. M. Thurman, “Geochemistry and sampling of molybdenum in sediments, soils, and plants in Colorado,” in Molybdenum in the Environment, W. R. Chappel and K. K. Peterson, Eds., Marcel Dekker, New York, NY, USA, 1976.
  44. S. Sinnakkannu, A. R. Abdullah, N. M. Tahir, and M. R. Abas, “Degradation of metsulfuron methyl in selected malaysian agricultural soils,” Fresenius Environmental Bulletin, vol. 13, no. 3, pp. 258–261, 2004. View at Scopus
  45. A. M. Hassan, B. M. Haroun, A. A. Amara, and A. Ehab, “Serour production and characterization of keratinolytic protease from new wool-degrading Bacillus species isolated from Egyptian ecosystem,” BioMed Research International, vol. 2013, Article ID 175012, 14 pages, 2013. View at Publisher · View at Google Scholar
  46. R. Elangovan, L. Philip, and K. Chandraraj, “Hexavalent chromium reduction by free and immobilized cell-free extract of arthrobacter rhombi-RE,” Applied Biochemistry and Biotechnology, vol. 160, no. 1, pp. 81–97, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. G. B. Sau, S. Chatterjee, and S. K. Mukherjee, “Chromate reduction by cell-free extract of Bacillus firmus KUCr1,” Polish Journal of Microbiology, vol. 59, no. 3, pp. 185–190, 2010. View at Scopus
  48. A. C. Poopal and R. S. Laxman, “Studies on biological reduction of chromate by Streptomyces griseus,” Journal of Hazardous Materials, vol. 169, no. 1–3, pp. 539–545, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. U. Thacker and D. Madamwar, “Reduction of toxic chromium and partial localization of chromium reductase activity in bacterial isolate DM1,” World Journal of Microbiology and Biotechnology, vol. 21, no. 6-7, pp. 891–899, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Shen and Y. Wang, “Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456,” Applied and Environmental Microbiology, vol. 59, no. 11, pp. 3771–3777, 1993. View at Scopus
  51. J. M. Rajwade, P. B. Salunke, and K. M. Pknikar, “Biochemical basis of chromate reduction by Pseudomonas mendocina,” in Proceedings of the International Biohydrometallurgy Symposium, R. Amils and A. Ballester, Eds., pp. 105–114, Elsevier, New York, NY, USA, 1999.
  52. C. Garbisu, I. Alkorta, M. J. Llama, and J. L. Serra, “Aerobic chromate reduction by Bacillus subtilis,” Biodegradation, vol. 9, no. 2, pp. 133–141, 1998. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Y. Shukor, M. A. Syed, C. H. Lee, M. I. A. Karim, and N. A. Shamaan, “A method to distinguish between chemical and enzymatic reduction of molybdenum in Enterobacter cloacae strain 48,” Malaysian Journal of Biochemistry, vol. 7, pp. 71–72, 2002.
  54. P. Głuszcz, J. Petera, and S. Ledakowicz, “Mathematical modeling of the integrated process of mercury bioremediation in the industrial bioreactor,” Bioprocess and Biosystems Engineering, vol. 34, no. 3, pp. 275–285, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Sukumar, “Reduction of hexavalent chromium by Rhizopus oryzae,” African Journal of Environmental Science and Technology, vol. 4, no. 7, pp. 412–418, 2010.
  56. S. O. Soda, S. Yamamura, H. Zhou, M. Ike, and M. Fujita, “Reduction kinetics of As (V) to As (III) by a dissimilatory arsenate-reducing bacterium, Bacillus sp. SF-1,” Biotechnology and Bioengineering, vol. 93, no. 4, pp. 812–815, 2006. View at Publisher · View at Google Scholar · View at Scopus