About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 374967, 6 pages
http://dx.doi.org/10.1155/2013/374967
Research Article

Evaluation of a New Lipase from Staphylococcus sp. for Detergent Additive Capability

Bioprocess Engineering Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh 173 234, India

Received 19 April 2013; Revised 31 July 2013; Accepted 9 August 2013

Academic Editor: Kok Tat Tan

Copyright © 2013 Mamta Chauhan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Andualema and A. Gessesse, “Microbial lipases and their industrial applications: review,” Biotechnology, vol. 11, no. 3, pp. 100–118, 2012. View at Publisher · View at Google Scholar
  2. Lomax, K. Hammond, M. Clemente, and R. East, “New entrants in a mature market: an empirical study of the detergent market,” Journal of Product Innovation Management, vol. 14, pp. 61–62, 1997. View at Publisher · View at Google Scholar
  3. S. Cherif, S. Mnif, F. Hadrich, S. Abdelkafi, and S. Sayadi, “A newly high alkaline lipase: an ideal choice for application in detergent formulations,” Lipids in Health and Disease, vol. 10, p. 221, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Jellouli, O. Ghorbel-Bellaaj, H. B. Ayed, L. Manni, R. Agrebi, and M. Nasri, “Alkaline-protease from Bacillus licheniformis MP1: purification, characterization and potential application as a detergent additive and for shrimp waste deproteinization,” Process Biochemistry, vol. 46, no. 6, pp. 1248–1256, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Saeki, K. Ozaki, T. Kobayashi, and S. Ito, “Detergent alkaline proteases: enzymatic properties, genes, and crystal structures,” Journal of Bioscience and Bioengineering, vol. 103, no. 6, pp. 501–508, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Horchani, I. Aissa, S. Ouertani, Z. Zarai, Y. Gargouri, and A. Sayari, “Staphylococcal lipases: biotechnological applications,” Journal of Molecular Catalysis B, vol. 76, pp. 125–132, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Rathi, R. K. Saxena, and R. Gupta, “A novel alkaline lipase from Burkholderia cepacia for detergent formulation,” Process Biochemistry, vol. 37, no. 2, pp. 187–192, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Thirunavukarasu, N. G. Edwinoliver, S. Anbarasan, M. K. Gowthaman, H. Iefuji, and N. R. Kamini, “Removal of triglyceride soil from fabrics by a novel lipase from Cryptococcus sp. S-2,” Process Biochemistry, vol. 43, no. 7, pp. 701–706, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Basketter, N. Berg, C. Broekhuizen et al., “Enzymes in cleaning products: an overview of toxicological properties and risk assessment/management,” Regulatory Toxicology and Pharmacology, vol. 64, no. 1, pp. 117–123, 2012. View at Publisher · View at Google Scholar
  10. F. Hasan, A. A. Shah, and A. Hameed, “Industrial applications of microbial lipases,” Enzyme and Microbial Technology, vol. 39, no. 2, pp. 235–251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Chauhan and V. K. Garlapati, “Production and characterization of a halo-, solvent-, thermo tolerant alkaline lipase by Staphylococcus arlettae JPBW-1, isolated from rock salt mine,” Applied Biochemistry and Biotechnology, 2013. View at Publisher · View at Google Scholar
  12. V. K. Garlapati and R. Banerjee, “Evolutionary and swarm intelligence-based approaches for optimization of lipase extraction from fermented broth,” Engineering in Life Sciences, vol. 10, no. 3, pp. 265–273, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. N. R. Kamini, T. Fujii, T. Kurosu, and H. Iefuji, “Production, purification and characterization of an extracellular lipase from the yeast, Cryptococcus sp. S-2,” Process Biochemistry, vol. 36, no. 4, pp. 317–324, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Saisubramanian, N. G. Edwinoliver, N. Nandakumar, N. R. Kamini, and R. Puvanakrishnan, “Efficacy of lipase from Aspergillus niger as an additive in detergent formulations: a statistical approach,” Journal of Industrial Microbiology and Biotechnology, vol. 33, no. 8, pp. 669–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. U. Derewenda, L. Swenson, Y. Wei et al., “Conformational lability of lipases observed in the absence of an oil-water interface: crystallographic studies of enzymes from the fungi Humicola lanuginosa and Rhizopus delemar,” Journal of Lipid Research, vol. 35, no. 3, pp. 524–534, 1994. View at Scopus
  16. C. Hemachander and R. Puvanakrishnan, “Lipase from Ralstonia pickettii as an additive in laundry detergent formulations,” Process Biochemistry, vol. 35, no. 8, pp. 809–814, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. R. K. Saxena, W. S. Davidson, A. Sheoran, and B. Giri, “Purification and characterization of an alkaline thermostable lipase from Aspergillus carneus,” Process Biochemistry, vol. 39, no. 2, pp. 239–247, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. I. C. Omar, M. Hayashi, and S. Nagai, “Purification and some properties of thermostable lipase from Humicola lanuginosa,” Agricultural Biology and Chemistry, vol. 51, pp. 37–45, 1987.
  19. K. V. Sajna, R. K. Sukumaran, H. Jayamurthy et al., “Studies on biosurfactants from Pseudozyma sp. NII, 08165 and their potential application as laundry detergent additives,” Biochemical Engineering Journal, vol. 78, pp. 85–92, 2013. View at Publisher · View at Google Scholar
  20. J. A. C. Flipsen, A. C. M. Appel, H. T. W. M. van der Hijden, and C. T. Verrips, “Mechanism of removal of immobilized triacylglycerol by lipolytic enzymes in a sequential laundry wash process,” Enzyme and Microbial Technology, vol. 23, no. 3-4, pp. 274–280, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Grbavčić, D. Bezbradica, L. Izrael-Živković et al., “Production of lipase and protease from an indigenous Pseudomonas aeruginosa strain and their evaluation as detergent additives: compatibility study with detergent ingredients and washing performance,” Bioresource Technology, vol. 102, no. 24, pp. 11226–11233, 2011. View at Publisher · View at Google Scholar
  22. H. Horchani, H. Mosbah, N. Bensal, Y. Gargouri, and A. Sayari, “Biochemical and molecular characterisation of a thermoactive, alkaline and detergent-stable lipase from a newly isolated Staphylococcus aureus strain,” Journal of Molecular Catalysis B, vol. 56, no. 4, pp. 237–245, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. I. B. Romdhane, A. Fendri, Y. Gargouri, A. Gargouri, and H. Belghith, “A novel thermoactive and alkaline lipase from Talaromyces thermophilus fungus for use in laundry detergents,” Biochemical Engineering Journal, vol. 53, no. 1, pp. 112–120, 2010. View at Publisher · View at Google Scholar · View at Scopus