About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 379850, 9 pages
http://dx.doi.org/10.1155/2013/379850
Review Article

Pinocembrin: A Novel Natural Compound with Versatile Pharmacological and Biological Activities

1The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
2Dental Hospital, Jilin University, Changchun 130041, China
3Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan 60800, Pakistan

Received 29 April 2013; Revised 1 July 2013; Accepted 9 July 2013

Academic Editor: Isabel C. F. R. Ferreira

Copyright © 2013 Azhar Rasul et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Gurib-Fakim, “Medicinal plants: traditions of yesterday and drugs of tomorrow,” Molecular Aspects of Medicine, vol. 27, no. 1, pp. 1–93, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. D. J. Newman, G. M. Cragg, and K. M. Snader, “The influence of natural products upon drug discovery,” Natural Product Reports, vol. 17, no. 3, pp. 215–234, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. A. L. Harvey, “Natural products in drug discovery,” Drug Discovery Today, vol. 13, no. 19-20, pp. 894–901, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. D. J. Newman, G. M. Cragg, and K. M. Snader, “Natural products as sources of new drugs over the period 1981–2002,” Journal of Natural Products, vol. 66, no. 7, pp. 1022–1037, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. M. J. Balunas and A. D. Kinghorn, “Drug discovery from medicinal plants,” Life Sciences, vol. 78, no. 5, pp. 431–441, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. Y.-W. Chin, M. J. Balunas, H. B. Chai, and A. D. Kinghorn, “Drug discovery from natural sources,” AAPS Journal, vol. 8, no. 2, article 28, pp. E239–E253, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. F. E. Koehn and G. T. Carter, “The evolving role of natural products in drug discovery,” Nature Reviews Drug Discovery, vol. 4, no. 3, pp. 206–220, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. D. J. Newman and G. M. Cragg, “Natural products as sources of new drugs over the last 25 years,” Journal of Natural Products, vol. 70, no. 3, pp. 461–477, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. I. Paterson and E. A. Anderson, “The renaissance of natural products as drug candidates,” Science, vol. 310, no. 5747, pp. 451–453, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. S. Butler, “Natural products to drugs: natural product derived compounds in clinical trials,” Natural Product Reports, vol. 22, no. 2, pp. 162–195, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. N. R. Farnsworth, O. Akerele, and A. S. Bingel, “Medicinal plants in therapy,” Bulletin of the World Health Organization, vol. 63, no. 6, pp. 965–981, 1985. View at Scopus
  12. N. F. Balandrin, A. D. Kinghorn, and N. R. Farnsworth, “Plant-derived natural products in drug discovery and development: an overview,” in Human Medicinal Agents from Plants, A. D. Kinghorn and M. F. Balandrin, Eds., vol. 534 of ACS Symposium Series, pp. 2–12, 1993.
  13. R. Arvigo and M. Balick, Rainforest Remedies, Lotus Press, Twin Lakes, Colo, USA, 1993.
  14. F. Grifo, D. J. Newman, A. S. Fairfield, B. Bhattacharya, and J. T. Grupenhoff, The Origin of Prescription Drugs, F. Grifo, and J. Rosenthal, Eds., Island Press, Washington, DC, USA, 1997.
  15. B. Patwardhan, “Ethnopharmacology and drug discovery,” Journal of Ethnopharmacology, vol. 100, no. 1-2, pp. 50–52, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. D.-X. Kong, X.-J. Li, and H.-Y. Zhang, “Where is the hope for drug discovery? Let history tell the future,” Drug Discovery Today, vol. 14, no. 3-4, pp. 115–119, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Su, L. Kong, X. Lei, L. Hu, M. Ye, and H. Zou, “Biological fingerprinting analysis of traditional Chinese medicines with targeting ADME/Tox property for screening of bioactive compounds by chromatographic and MS methods,” Mini-Reviews in Medicinal Chemistry, vol. 7, no. 1, pp. 87–98, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Y. K. Chan, J. C. N. Chan, B. Tomlinson, and J. A. J. H. Critchley, “Chinese herbal medicines revisited: a Hong Kong perspective,” Lancet, vol. 342, no. 8886-8887, pp. 1532–1534, 1993. View at Publisher · View at Google Scholar · View at Scopus
  19. T.-H. Tsai, “Analytical approaches for traditional Chinese medicines exhibiting antineoplastic activity,” Journal of Chromatography B, vol. 764, no. 1-2, pp. 27–48, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. M. B. Sporn and D. L. Newton, “Chemoprevention of cancer with retinoids,” Federation Proceedings, vol. 38, no. 11, pp. 2528–2534, 1979. View at Scopus
  21. L. Chen, “Polyphenols from leaves of Euphorbia hirta L,” Journal of Chinese Medicinal Materials, vol. 16, no. 1, pp. 38–64, 1991. View at Scopus
  22. A. G. Hegazi, F. K. Abd El Hady, and F. A. M. Abd Allah, “Chemical composition and antimicrobial activity of European propolis,” Zeitschrift für Naturforschung C, vol. 55, no. 1-2, pp. 70–75, 2000. View at Scopus
  23. J.-P. Rauha, S. Remes, M. Heinonen et al., “Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds,” International Journal of Food Microbiology, vol. 56, no. 1, pp. 3–12, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. M. A. S. Kumar, M. Nair, P. S. Hema, J. Mohan, and T. R. Santhoshkumar, “Pinocembrin triggers Bax-dependent mitochondrial apoptosis in colon cancer cells,” Molecular Carcinogenesis, vol. 46, no. 3, pp. 231–241, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Punvittayagul, R. Wongpoomchai, S. Taya, and W. Pompimon, “Effect of pinocembrin isolated from Boesenbergia pandurata on xenobiotic-metabolizing enzymes in rat liver,” Drug Metabolism Letters, vol. 5, no. 1, pp. 1–5, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Estevinho, A. P. Pereira, L. Moreira, L. G. Dias, and E. Pereira, “Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey,” Food and Chemical Toxicology, vol. 46, no. 12, pp. 3774–3779, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Šarić, T. Balog, S. Sobočanec et al., “Antioxidant effects of flavonoid from Croatian Cystus incanus L. rich bee pollen,” Food and Chemical Toxicology, vol. 47, no. 3, pp. 547–554, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Sala, M. C. Recio, G. R. Schinella et al., “Assessment of the anti-inflammatory activity and free radical scavenger activity of tiliroside,” European Journal of Pharmacology, vol. 461, no. 1, pp. 53–61, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. L. W. Soromou, X. Chu, L. Jiang et al., “In vitro and in vivo protection provided by pinocembrin against lipopolysaccharide-induced inflammatory responses,” International Immunopharmacology, vol. 14, no. 1, pp. 66–74, 2012.
  30. A. López, S. M. Dong, and G. H. N. Towers, “Antifungal activity of benzoic acid derivatives from Piper lanceaefolium,” Journal of Natural Products, vol. 65, no. 1, pp. 62–64, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. J. A. Ramirez, A. G. McIntosh, R. Strehlow, V. A. Lawrence, D. J. Parekh, and R. S. Svatek, “Definition, incidence, risk factors, and prevention of paralytic ileus following radical cystectomy: a systematic review,” European Urology, 2012. View at Publisher · View at Google Scholar
  32. R. Feng, Z. K. Guo, C. M. Yan, E. G. Li, R. X. Tan, and H. M. Ge, “Anti-inflammatory flavonoids from Cryptocarya chingii,” Phytochemistry, vol. 76, pp. 98–105, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. A. P. Danelutte, J. H. G. Lago, M. C. M. Young, and M. J. Kato, “Antifungal flavanones and prenylated hydroquinones from Piper crassinervium Kunth,” Phytochemistry, vol. 64, no. 2, pp. 555–559, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. G. N. Diaz Napal, M. C. Carpinella, and S. M. Palacios, “Antifeedant activity of ethanolic extract from Flourensia oolepis and isolation of pinocembrin as its active principle compound,” Bioresource Technology, vol. 100, no. 14, pp. 3669–3673, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Mandal and S. K. Jaganathan, “Antiproliferative effects of honey and of its polyphenols: a review,” Journal of Biomedicine and Biotechnology, vol. 2009, Article ID 830616, 13 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Jiang and J. A. Morgan, “Optimization of an in vivo plant P450 monooxygenase system in Saccharomyces cerevisiae,” Biotechnology and Bioengineering, vol. 85, no. 2, pp. 130–137, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. I. Miyahisa, N. Funa, Y. Ohnishi, S. Martens, T. Moriguchi, and S. Horinouchi, “Combinatorial biosynthesis of flavones and flavonols in Escherichia coli,” Applied Microbiology and Biotechnology, vol. 71, no. 1, pp. 53–58, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. J. A. Manthey, N. Guthrie, and K. Grohmann, “Biological properties of citrus flavonoids pertaining to cancer and inflammation,” Current Medicinal Chemistry, vol. 8, no. 2, pp. 135–153, 2001. View at Scopus
  39. Y. S. Touil, A. Fellous, D. Scherman, and G. G. Chabot, “Flavonoid-induced morphological modifications of endothelial cells through microtubule stabilization,” Nutrition and Cancer, vol. 61, no. 3, pp. 310–321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. I. Jantan, S. M. Raweh, H. M. Sirat et al., “Inhibitory effect of compounds from Zingiberaceae species on human platelet aggregation,” Phytomedicine, vol. 15, no. 4, pp. 306–309, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. N. A. Mustahil, M. A. Sukari, A. B. Abdul, N. A. Ali, and G. E. Lian, “Evaluation of biological activities of Alpinia mutica Roxb. and its chemical constituents,” Pakistan Journal of Pharmaceutical Sciences, vol. 26, no. 2, pp. 391–395, 2013.
  42. X. Xu, H. Xie, J. Hao, Y. Jiang, and X. Wei, “Flavonoid glycosides from the seeds of litchi chinensis,” Journal of Agricultural and Food Chemistry, vol. 59, no. 4, pp. 1205–1209, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Rufino-González, M. Ponce-Macotela, A. GonzÁlez-Maciel et al., “In vitro activity of the F-6 fraction of oregano against Giardia intestinalis,” Parasitology, vol. 139, no. 4, pp. 434–440, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. E. E. Stashenko, J. R. Martínez, C. A. Ruíz et al., “Lippia origanoides chemotype differentiation based on essential oil GC-MS and principal component analysis,” Journal of Separation Science, vol. 33, no. 1, pp. 93–103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. D. R. Oliveira, G. G. Leitão, S. S. Santos et al., “Ethnopharmacological study of two Lippia species from Oriximiná, Brazil,” Journal of Ethnopharmacology, vol. 108, no. 1, pp. 103–108, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. M. A. Peralta, M. Calise, M. C. Fornari et al., “A prenylated flavanone from Dalea elegans inhibits rhodamine 6 G efflux and reverses fluconazole-resistance in Candida albicans,” Planta Medica, vol. 78, no. 10, pp. 981–987, 2012. View at Publisher · View at Google Scholar
  47. S.-Y. Yao, Y.-B. Ma, Y. Tang, J.-J. Chen, and X.-M. Zhang, “Chemical constituents of Oxytropis falcate,” Zhongguo Zhongyao Zazhi, vol. 33, no. 12, pp. 1418–1421, 2008. View at Scopus
  48. W.-H. Chen, R. Wang, and Y.-P. Shi, “Flavonoids in the poisonous plant Oxytropis falcata,” Journal of Natural Products, vol. 73, no. 8, pp. 1398–1403, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. M. P. Yuldashev, E. K. Batirov, A. D. Vdovin, and N. D. Abdullaev, “Structural study of glabrisoflavone, a novel isoflavone from Glycyrrhiza glabra L,” Bioorganicheskaya Khimiya, vol. 26, no. 11, pp. 873–876, 2000. View at Scopus
  50. Y.-M. Cui, M.-Z. Ao, W. Li, and L.-J. Yu, “Effect of glabridin from Glycyrrhiza glabra on learning and memory in mice,” Planta Medica, vol. 74, no. 4, pp. 377–380, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. F. D. N. Costa and G. G. Leitão, “Evaluation of different solvent systems for the isolation of sparattosperma leucanthum flavonoids by counter-current chromatography,” Journal of Chromatography A, vol. 1218, no. 36, pp. 6200–6205, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. M. I. Aboushoer, H. M. Fathy, M. S. Abdel-Kader, G. Goetz, and A. A. Omar, “Terpenes and flavonoids from an Egyptian collection of Cleome droserifolia,” Natural Product Research, vol. 24, no. 7, pp. 687–696, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. M. J. Salvador, F. T. Sartori, A. C. B. C. Sacilotto, E. M. F. Pral, S. C. Alfieri, and W. Vichnewski, “Bioactivity of flavonoids isolated from Lychnophora markgravii against Leishmania amazonensis amastigotes,” Zeitschrift fur Naturforschung C, vol. 64, no. 7-8, pp. 509–512, 2009. View at Scopus
  54. S. E. Drewes and S. F. van Vuuren, “Antimicrobial acylphloroglucinols and dibenzyloxy flavonoids from flowers of Helichrysum gymnocomum,” Phytochemistry, vol. 69, no. 8, pp. 1745–1749, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. M. J. Simirgiotis, S. Adachi, S. To et al., “Cytotoxic chalcones and antioxidants from the fruits of Syzygium samarangense (Wax Jambu),” Food Chemistry, vol. 107, no. 2, pp. 813–819, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. E. Harlev, E. Nevo, E. P. Lansky, S. Lansky, and A. Bishayee, “Anticancer attributes of desert plants: a review,” Anti-Cancer Drugs, vol. 23, no. 3, pp. 255–271, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Zhao, A. K. Dasmahapatra, S. I. Khan, and I. A. Khan, “Anti-aromatase activity of the constituents from damiana (Turnera diffusa),” Journal of Ethnopharmacology, vol. 120, no. 3, pp. 387–393, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. Y.-L. Liu, D. K. Ho, J. M. Cassady, V. M. Cook, and W. M. Baird, “Isolation of potential cancer chemopreventive agents from Eriodictyon californicum,” Journal of Natural Products, vol. 55, no. 3, pp. 357–363, 1992. View at Scopus
  59. S. Horinouchi, “Combinatorial biosynthesis of non-bacterial and unnatural flavonoids, stilbenoids and curcuminoids by microorganisms,” Journal of Antibiotics, vol. 61, no. 12, pp. 709–728, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. E. I. Hwang, M. Kaneko, Y. Ohnishi, and S. Horinouchi, “Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster,” Applied and Environmental Microbiology, vol. 69, no. 5, pp. 2699–2706, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. I. Miyahisa, M. Kaneko, N. Funa et al., “Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster,” Applied Microbiology and Biotechnology, vol. 68, no. 4, pp. 498–504, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. P. S. Ruddock, M. Charland, S. Ramirez et al., “Antimicrobial activity of flavonoids from Piper lanceaefolium and other Colombian medicinal plants against antibiotic susceptible and resistant strains of Neisseria gonorrhoeae,” Sexually Transmitted Diseases, vol. 38, no. 2, pp. 82–88, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. M. K. Urban, “COX-2 specific inhibitors offer improved advantages over traditional NSAIDs,” Orthopedics, vol. 23, no. 7, pp. s761–s764, 2000. View at Scopus
  64. L. W. Soromou, L. Jiang, M. Wei et al., “Protection of mice against lipopolysaccharide-induced endotoxic shock by pinocembrin is correlated with regulation of cytokine secretion,” Journal of Immunotoxicology, 2013. View at Publisher · View at Google Scholar
  65. S. Arslan, H. Ozbilge, E. G. Kaya, and O. Er, “In vitro antimicrobial activity of propolis, BioPure MTAD, sodium hypochlorite, and chlorhexidine on Enterococcus faecalis and Candida albicans,” Saudi Medical Journal, vol. 32, no. 5, pp. 479–483, 2011. View at Scopus
  66. J. Metzner, H. Bekemeier, E. M. Schneidewind, and U. Wenzel, “Pharmacokinetic studies of the propolis constituent pinocembrin in the rat,” Pharmazie, vol. 34, no. 3, pp. 185–187, 1979. View at Scopus
  67. J. Metzner and E. M. Schneidewind, “Studies on the question of potentiating effects of propolis constituents,” Pharmazie, vol. 33, no. 7, p. 465, 1978. View at Scopus
  68. Y. K. Park, M. H. Koo, J. A. S. Abreu, M. Ikegaki, J. A. Cury, and P. L. Rosalen, “Antimicrobial activity of propolis on oral microorganisms,” Current Microbiology, vol. 36, no. 1, pp. 24–28, 1998. View at Publisher · View at Google Scholar · View at Scopus
  69. A. S. Tsao, E. S. Kim, and W. K. Hong, “Chemoprevention of cancer,” Ca-A Cancer Journal for Clinicians, vol. 54, no. 3, pp. 150–180, 2004. View at Scopus
  70. S. Elmore, “Apoptosis: a review of programmed cell death,” Toxicologic Pathology, vol. 35, no. 4, pp. 495–516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. M. O. Hengartner, “The biochemistry of apoptosis,” Nature, vol. 407, no. 6805, pp. 770–776, 2000. View at Publisher · View at Google Scholar · View at Scopus
  72. G. I. Evan and K. H. Vousden, “Proliferation, cell cycle and apoptosis in cancer,” Nature, vol. 411, no. 6835, pp. 342–348, 2001. View at Publisher · View at Google Scholar · View at Scopus
  73. D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Fulda, “Evasion of apoptosis as a cellular stress response in cancer,” International Journal of Cell Biology, vol. 2010, Article ID 370835, 6 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Lawen, “Apoptosis—an introduction,” BioEssays, vol. 25, no. 9, pp. 888–896, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. J. C. Reed, “Apoptosis-based therapies,” Nature Reviews Drug Discovery, vol. 1, no. 2, pp. 111–121, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Rasul, R. Bao, M. Malhi et al., “Induction of apoptosis by costunolide in bladder cancer cells is mediated through ros generation and mitochondrial dysfunction,” Molecules, vol. 18, no. 2, pp. 1418–1433, 2013.
  78. A. Rasul, C. Ding, X. Li et al., “Dracorhodin perchlorate inhibits PI3K/Akt and NF-kappaB activation, up-regulates the expression of p53, and enhances apoptosis,” Apoptosis, vol. 17, no. 10, pp. 1104–1119, 2012.
  79. A. Rasul, M. Khan, B. Yu, T. Ma, and H. Yang, “Xanthoxyletin, a coumarin induces S phase arrest and apoptosis in human gastric adenocarcinoma SGC-7901 cells,” Asian Pacific Journal of Cancer Prevention, vol. 12, no. 5, pp. 1219–1223, 2011. View at Scopus
  80. A. Rasul, R. Song, W. Wei et al., “Tubeimoside-1 inhibits growth via the induction of cell cycle arrest and apoptosis in human melanoma A375 cells,” Bangladesh Journal of Pharmacology, vol. 7, pp. 150–156, 2012.
  81. A. Rasul, B. Yu, M. Khan et al., “Magnolol, a natural compound, induces apoptosis of SGC-7901 human gastric adenocarcinoma cells via the mitochondrial and PI3K/Akt signaling pathways,” International Journal of Oncology, vol. 40, no. 4, pp. 1153–1161, 2012. View at Publisher · View at Google Scholar · View at Scopus
  82. A. Rasul, B. Yu, L.-F. Yang et al., “Induction of mitochondria-mediated apoptosis in human gastric adenocarcinoma SGC-7901 cells by kuraridin and nor-kurarinone isolated from sophora flavescens,” Asian Pacific Journal of Cancer Prevention, vol. 12, no. 10, pp. 2499–2504, 2011. View at Scopus
  83. A. Rasul, B. Yu, L. Zhong, M. Khan, H. Yang, and T. Ma, “Cytotoxic effect of evodiamine in SGC-7901 human gastric adenocarcinoma cells via simultaneous induction of apoptosis and autophagy,” Oncology Reports, vol. 27, no. 5, pp. 1481–1487, 2012. View at Publisher · View at Google Scholar · View at Scopus
  84. Y. Shi, Y. L. Bao, Y. Wu et al., “Alantolactone inhibits cell proliferation by interrupting the interaction between Cripto-1 and activin receptor type II A in activin signaling pathway,” Journal of Biomolecular Screening, vol. 16, no. 5, pp. 525–535, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. C. Punvittayagul, W. Pompimon, H. Wanibuchi, S. Fukushima, and R. Wongpoomchai, “Effects of pinocembrin on the initiation and promotion stages of rat hepatocarcinogenesis,” Asian Pacific Journal of Cancer Prevention, vol. 13, no. 5, pp. 2257–2261, 2012.
  86. M. M. Essa, R. K. Vijayan, G. Castellano-Gonzalez, M. A. Memon, N. Braidy, and G. J. Guillemin, “Neuroprotective effect of natural products against Alzheimer's disease,” Neurochemical Research, vol. 37, no. 9, pp. 1829–1842, 2012.
  87. J. Almaliti, S. E. Nada, B. Carter, Z. A. Shah, and L. M. Tillekeratne, “Natural products inspired synthesis of neuroprotective agents against H2O2-induced cell death,” Bioorganic & Medicinal Chemistry Letters, vol. 23, no. 5, pp. 1232–1237, 2013.
  88. M. Weigl, G. Tenze, B. Steinlechner et al., “A systematic review of currently available pharmacological neuroprotective agents as a sole intervention before anticipated or induced cardiac arrest,” Resuscitation, vol. 65, no. 1, pp. 21–39, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. L.-L. Shi, G.-F. Qiang, M. Gao et al., “Effect of pinocembrin on brain mitochondrial respiratory function,” Yaoxue Xuebao, vol. 46, no. 6, pp. 642–649, 2011. View at Scopus
  90. M. Gao, R. Liu, S.-Y. Zhu, and G.-H. Du, “Acute neurovascular unit protective action of pinocembrin against permanent cerebral ischemia in rats,” Journal of Asian Natural Products Research, vol. 10, no. 6, pp. 551–558, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Gao, S.-Y. Zhu, C.-B. Tan, B. Xu, W.-C. Zhang, and G.-H. Du, “Pinocembrin protects the neurovascular unit by reducing inflammation and extracellular proteolysis in MCAO rats,” Journal of Asian Natural Products Research, vol. 12, no. 5, pp. 407–418, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. R. Liu, M. Gao, Z.-H. Yang, and G.-H. Du, “Pinocembrin protects rat brain against oxidation and apoptosis induced by ischemia-reperfusion both in vivo and in vitro,” Brain Research, vol. 1216, pp. 104–115, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. H.-M. Guang and G.-H. Du, “Protections of pinocembrin on brain mitochondria contribute to cognitive improvement in chronic cerebral hypoperfused rats,” European Journal of Pharmacology, vol. 542, no. 1-3, pp. 77–83, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. L.-L. Shi, B.-N. Chen, M. Gao et al., “The characteristics of therapeutic effect of pinocembrin in transient global brain ischemia/reperfusion rats,” Life Sciences, vol. 88, no. 11-12, pp. 521–528, 2011. View at Publisher · View at Google Scholar · View at Scopus
  95. F. Meng, R. Liu, M. Gao et al., “Pinocembrin attenuates blood-brain barrier injury induced by global cerebral ischemia-reperfusion in rats,” Brain Research, vol. 1391, pp. 93–101, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. B. Gröblacher, O. Kunert, and F. Bucar, “Compounds of Alpinia katsumadai as potential efflux inhibitors in Mycobacterium smegmatis,” Bioorganic and Medicinal Chemistry, vol. 20, no. 8, pp. 2701–2706, 2012. View at Publisher · View at Google Scholar · View at Scopus
  97. M.-Y. Lee, C.-S. Seo, J.-A. Lee et al., “Alpinia katsumadai HAYATA seed extract inhibit LPS-induced inflammation by induction of heme oxygenase-1 in RAW264.7 Cells,” Inflammation, vol. 35, no. 2, pp. 746–757, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. J. Tang, N. Li, H. Dai, and K. Wang, “Chemical constituents from seeds of Aplinia katsumadai, inhibition on NF-κB activation and anti-tumor effect,” Zhongguo Zhongyao Zazhi, vol. 35, no. 13, pp. 1710–1714, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. X.-Q. Wang, X.-J. Yang, and J.-S. Li, “Studies on chemical constituents of Alpinia katsumadai,” Journal of Chinese Medicinal Materials, vol. 31, no. 6, pp. 853–855, 2008. View at Scopus
  100. C.-L. Hsu, Y.-S. Yu, and G.-C. Yen, “Anticancer effects of Alpinia pricei Hayata roots,” Journal of Agricultural and Food Chemistry, vol. 58, no. 4, pp. 2201–2208, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. Y. S. Yu, C.-L. Hsu, and Y. Gow-Chin, “Anti-inflammatory Effects of the Roots of Alpinia pricei Hayata and Its Phenolic Compounds,” Journal of Agricultural and Food Chemistry, vol. 57, no. 17, pp. 7673–7680, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. H. Mohamad, F. Abas, D. Permana et al., “DPPH free radical scavenger components from the fruits of Alpinia rafflesiana Wall. ex. Bak. (Zingiberaceae),” Zeitschrift fur Naturforschung C, vol. 59, no. 11-12, pp. 811–815, 2004. View at Scopus
  103. P. Tuchinda, V. Reutrakul, P. Claeson et al., “Anti-inflammatory cyclohexenyl chalcone derivatives in Boesenbergia pandurata,” Phytochemistry, vol. 59, no. 2, pp. 169–173, 2002. View at Publisher · View at Google Scholar · View at Scopus
  104. S. Charoensin, C. Punvittayagul, W. Pompimon, U. Mevateeand, and R. Wongpoomchai, “Toxicological and clastogenic evaluation of pinocembrin and pinostrobin isolated from Boesenbergia pandurata in Wistar rats,” Thai Journal of Toxicology, vol. 25, no. 1, pp. 29–40, 2010.
  105. D. R. Katerere, A. I. Gray, R. J. Nash, and R. D. Waigh, “Phytochemical and antimicrobial investigations of stilbenoids and flavonoids isolated from three species of Combretaceae,” Fitoterapia, vol. 83, no. 5, pp. 932–940, 2012.
  106. T.-H. Chou, J.-J. Chen, C.-F. Peng, M.-J. Cheng, and I.-S. Chen, “New flavanones from the leaves of cryptocarya chinensis and their antituberculosis activity,” Chemistry and Biodiversity, vol. 8, no. 11, pp. 2015–2024, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. F. Kurniadewi, L. D. Juliawaty, Y. M. Syah et al., “Phenolic compounds from Cryptocarya konishii: their cytotoxic and tyrosine kinase inhibitory properties,” Journal of Natural Medicines, vol. 64, no. 2, pp. 121–125, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. H. Alvarez-Ospina, I. Rivero Cruz, G. Duarte, R. Bye, and R. Mata, “HPLC determination of the major active flavonoids and GC-MS analysis of volatile components of Dysphania graveolens (Amaranthaceae),” Phytochemical Analysis, vol. 24, no. 3, pp. 248–254, 2012.
  109. Y. Wu, W. Qu, D. Geng, J.-Y. Liang, and Y.-L. Luo, “Phenols and flavonoids from the aerial part of Euphorbia hirta,” Chinese Journal of Natural Medicines, vol. 10, no. 1, pp. 40–42, 2012. View at Publisher · View at Google Scholar · View at Scopus
  110. J. H. Lago, A. T. Ito, C. M. Fernandes, M. C. Young, and M. J. Kato, “Secondary metabolites isolated from Piper chimonantifolium and their antifungal activity,” Natural Product Research, vol. 26, no. 8, pp. 770–773, 2012.
  111. L. Pan, S. Matthew, D. D. Lantvit et al., “Bioassay-guided isolation of constituents of Piper sarmentosum using a mitochondrial transmembrane potential assay,” Journal of Natural Products, vol. 74, no. 10, pp. 2193–2199, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. J. B. Zižić, N. L. Vuković, M. B. Jadranin et al., “Chemical composition, cytotoxic and antioxidative activities of ethanolic extracts of propolis on HCT-116 cell line,” Journal of the Science of Food and Agriculture, 2013. View at Publisher · View at Google Scholar
  113. H. M. Salahdeen and B. A. Murtala, “Vasorelaxant effects of aqueous leaf extract of Tridax procumbens on aortic smooth muscle isolated from the rat,” Journal of Smooth Muscle Research, vol. 48, no. 2-3, pp. 37–45, 2012.