About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 383685, 8 pages
http://dx.doi.org/10.1155/2013/383685
Review Article

Immunomodulatory Effects of Adipose-Derived Stem Cells: Fact or Fiction?

1Vascularized Composite Allotransplantation (VCA) Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
2Reconstructive Transplantation Program, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Ross Research Building 749D, 720 Rutland Avenue, Baltimore, MD 21205, USA

Received 1 May 2013; Accepted 5 August 2013

Academic Editor: Silvia Gregori

Copyright © 2013 Angelo A. Leto Barone et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Garcia-Olmo, D. Herreros, I. Pascual et al., “Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase ii clinical trial,” Diseases of the Colon and Rectum, vol. 52, no. 1, pp. 79–86, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Garcia-Olmo, M. Garcia-Arranz, and D. Herreros, “Expanded adipose-derived stem cells for the treatment of complex perianal fistula including Crohn's disease,” Expert Opinion on Biological Therapy, vol. 8, no. 9, pp. 1417–1423, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Lendeckel, A. Jödicke, P. Christophis et al., “Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report,” Journal of Cranio-Maxillofacial Surgery, vol. 32, no. 6, pp. 370–373, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Le Blanc, F. Frassoni, L. Ball et al., “Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study,” The Lancet, vol. 371, no. 9624, pp. 1579–1586, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Wang, A. Zhang, Z. Ye, H. Xie, and S. Zheng, “Bone marrow-derived mesenchymal stem cells inhibit acute rejection of rat liver allografts in association with regulatory T-cell expansion,” Transplantation Proceedings, vol. 41, no. 10, pp. 4352–4356, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Rasmusson, O. Ringdén, B. Sundberg, and K. Le Blanc, “Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms,” Experimental Cell Research, vol. 305, no. 1, pp. 33–41, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Aggarwal and M. F. Pittenger, “Human mesenchymal stem cells modulate allogeneic immune cell responses,” Blood, vol. 105, no. 4, pp. 1815–1822, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. W. T. Tse, J. D. Pendleton, W. M. Beyer, M. C. Egalka, and E. C. Guinan, “Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation,” Transplantation, vol. 75, no. 3, pp. 389–397, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Augello, R. Tasso, S. M. Negrini et al., “Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway,” European Journal of Immunology, vol. 35, no. 5, pp. 1482–1490, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Wolbank, A. Peterbauer, M. Fahrner et al., “Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue,” Tissue Engineering, vol. 13, no. 6, pp. 1173–1183, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Puissant, C. Barreau, P. Bourin et al., “Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells,” British Journal of Haematology, vol. 129, no. 1, pp. 118–129, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. R. Kuo, C. C. Chen, S. Goto, et al., “Immunomodulatory effects of bone marrow-derived mesenchymal stem cells in a swine hemi-facial allotransplantation model,” PloS One, vol. 7, Article ID e35459, 2012.
  13. J. C. Ra, I. S. Shin, S. H. Kim et al., “Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans,” Stem Cells and Development, vol. 20, no. 8, pp. 1297–1308, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. K. McIntosh, S. Zvonic, S. Garrett et al., “The immunogenicity of human adipose-derived cells: temporal changes in vitro,” Stem Cells, vol. 24, no. 5, pp. 1246–1253, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. B. Mitchell, K. McIntosh, S. Zvonic et al., “Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers,” Stem Cells, vol. 24, no. 2, pp. 376–385, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. M. M. Bonab, K. Alimoghaddam, F. Talebian, S. H. Ghaffari, A. Ghavamzadeh, and B. Nikbin, “Aging of mesenchymal stem cell in vitro,” BMC Cell Biology, vol. 7, article 14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Wislet-Gendebien, P. Leprince, G. Moonen, and B. Rogister, “Regulation of neural markers nestin and GFAP expression by cultivated bone marrow stromal cells,” Journal of Cell Science, vol. 116, no. 16, pp. 3295–3302, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Jung, G. Bauer, and J. A. Nolta, “Concise review: Induced pluripotent stem cell-derived mesenchymal stem cells: progress toward safe clinical products,” Stem Cells, vol. 30, no. 1, pp. 42–47, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. K. H. Yoo, I. K. Jang, M. W. Lee et al., “Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues,” Cellular Immunology, vol. 259, no. 2, pp. 150–156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. J. Hong, D. O. Traktuev, and K. L. March, “Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair,” Current Opinion in Organ Transplantation, vol. 15, no. 1, pp. 86–91, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. B. M. Strem, K. C. Hicok, M. Zhu et al., “Multipotential differentiation of adipose tissue-derived stem cells,” Keio Journal of Medicine, vol. 54, no. 3, pp. 132–141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Gronthos, D. M. Franklin, H. A. Leddy, P. G. Robey, R. W. Storms, and J. M. Gimble, “Surface protein characterization of human adipose tissue-derived stromal cells,” Journal of Cellular Physiology, vol. 189, pp. 54–63, 2001.
  23. L. Cui, Y. Shuo, W. Liu, N. Li, W. Zhang, and Y. Cao, “Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2,” Tissue Engineering, vol. 13, no. 6, pp. 1185–1195, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Gonzalez-Rey, M. A. Gonzalez, N. Varela et al., “Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 69, no. 1, pp. 241–248, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Gonzalez-Rey, P. Anderson, M. A. González, L. Rico, D. Büscher, and M. Delgado, “Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis,” Gut, vol. 58, no. 7, pp. 929–939, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. C. S. Lin, G. Lin, and T. F. Lue, “Allogeneic and xenogeneic transplantation of adipose-derived stem cells in immunocompetent recipients without immunosuppressants,” Stem Cells and Development, vol. 21, pp. 2770–2778, 2012.
  27. K. A. Keyser, K. E. Beagles, and H. Kiem, “Comparison of mesenchymal stem cells from different tissues to suppress T-cell activation,” Cell Transplantation, vol. 16, no. 5, pp. 555–562, 2007. View at Scopus
  28. O. Delarosa, E. Lombardo, A. Beraza et al., “Requirement of IFN-γ-mediated indoleamine 2,3-dioxygenase expression in the modulation of lymphocyte proliferation by human adipose-derived stem cells,” Tissue Engineering A, vol. 15, no. 10, pp. 2795–2806, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Lindroos, R. Suuronen, and S. Miettinen, “The potential of adipose stem cells in regenerative medicine,” Stem Cell Reviews and Reports, vol. 7, no. 2, pp. 269–291, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Wolbank, A. Peterbauer, M. Fahrner et al., “Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue,” Tissue Engineering, vol. 13, no. 6, pp. 1173–1183, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Kucerova, V. Altanerova, M. Matuskova, S. Tyciakova, and C. Altaner, “Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy,” Cancer Research, vol. 67, no. 13, pp. 6304–6313, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. J. M. Yu, E. S. Jun, Y. C. Bae, and J. S. Jung, “Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo,” Stem Cells and Development, vol. 17, no. 3, pp. 463–473, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. M. J. Crop, S. S. Korevaar, R. de Kuiper et al., “Human mesenchymal stem cells are susceptible to lysis by CD8+ T cells and NK cells,” Cell Transplantation, vol. 20, no. 10, pp. 1547–1559, 2011. View at Scopus
  34. F. Djouad, L. Charbonnier, C. Bouffi et al., “Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism,” Stem Cells, vol. 25, no. 8, pp. 2025–2032, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Rehman, D. Traktuev, J. Li et al., “Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells,” Circulation, vol. 109, no. 10, pp. 1292–1298, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Najar, G. Raicevic, H. I. Boufker et al., “Adipose-Tissue-Derived and Wharton's jelly-derived mesenchymal stromal cells suppress lymphocyte responses by secreting leukemia inhibitory factor,” Tissue Engineering A, vol. 16, no. 11, pp. 3537–3546, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. F. L. Muehlberg, Y. Song, A. Krohn et al., “Tissue-resident stem cells promote breast cancer growth and metastasis,” Carcinogenesis, vol. 30, no. 4, pp. 589–597, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Amariglio, A. Hirshberg, B. W. Scheithauer et al., “Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient,” PLoS Medicine, vol. 6, no. 2, Article ID e1000029, pp. 0221–0231, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Cousin, E. Ravet, S. Poglio et al., “Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo,” PLoS ONE, vol. 4, no. 7, Article ID e6278, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Winter, S. Breit, D. Parsch et al., “Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells,” Arthritis and Rheumatism, vol. 48, no. 2, pp. 418–429, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. J. M. Gimble, A. J. Katz, and B. A. Bunnell, “Adipose-derived stem cells for regenerative medicine,” Circulation Research, vol. 100, no. 9, pp. 1249–1260, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. K. M. Safford, K. C. Hicok, S. D. Safford et al., “Neurogenic differentiation of murine and human adipose-derived stromal cells,” Biochemical and Biophysical Research Communications, vol. 294, no. 2, pp. 371–379, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. V. Planat-Benard, J. Silvestre, B. Cousin et al., “Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives,” Circulation, vol. 109, no. 5, pp. 656–663, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. P. A. Zuk, M. Zhu, P. Ashjian et al., “Human adipose tissue is a source of multipotent stem cells,” Molecular Biology of the Cell, vol. 13, no. 12, pp. 4279–4295, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. F. De Francesco, V. Tirino, V. Desiderio et al., “Human CD34+/CD90+ ASCs are capable of growing as sphere clusters, producing high levels of VEGF and forming capillaries,” PLoS ONE, vol. 4, no. 8, Article ID e6537, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Madonna, Y. Geng, and R. De Caterina, “Adipose tissue-derived stem cells: characterization and potential for cardiovascular repair,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 11, pp. 1723–1729, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. D. O. Traktuev, S. Merfeld-Clauss, J. Li et al., “A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks,” Circulation Research, vol. 102, no. 1, pp. 77–85, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. D. O. Traktuev, D. N. Prater, S. Merfeld-Clauss et al., “Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells,” Circulation Research, vol. 104, no. 12, pp. 1410–1420, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. J. L. Chan, K. C. Tang, A. P. Patel et al., “Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-γ,” Blood, vol. 107, no. 12, pp. 4817–4824, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Krampera, L. Cosmi, R. Angeli et al., “Role for interferon-γ in the immunomodulatory activity of human bone marrow mesenchymal stem cells,” Stem Cells, vol. 24, no. 2, pp. 386–398, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. D. H. Munn, M. Zhou, J. T. Attwood et al., “Prevention of allogeneic fetal rejection by tryptophan catabolism,” Science, vol. 281, no. 5380, pp. 1191–1193, 1998. View at Scopus
  52. E. Zappia, S. Casazza, E. Pedemonte et al., “Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy,” Blood, vol. 106, no. 5, pp. 1755–1761, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Bartholomew, C. Sturgeon, M. Siatskas et al., “Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo,” Experimental Hematology, vol. 30, no. 1, pp. 42–48, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. E. Klyushnenkova, J. D. Mosca, V. Zernetkina et al., “T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression,” Journal of Biomedical Science, vol. 12, no. 1, pp. 47–57, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Kim, K. A. Chang, J. Kim, et al., “The preventive and therapeutic effects of intravenous human adipose-derived stem cells in Alzheimer's disease mice,” PloS One, vol. 7, Article ID e45757, 2012.
  57. Y. Zhou, J. Yuan, B. Zhou et al., “The therapeutic efficacy of human adipose tissue-derived mesenchymal stem cells on experimental autoimmune hearing loss in mice,” Immunology, vol. 133, no. 1, pp. 133–140, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. B. Fang, Y. Song, N. Li, J. Li, Q. Han, and R. C. Zhao, “Mesenchymal stem cells for the treatment of refractory pure red cell aplasia after major ABO-incompatible hematopoietic stem cell transplantation,” Annals of Hematology, vol. 88, no. 3, pp. 261–266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. B. Fang, Y. Song, L. Liao, Y. Zhang, and R. C. Zhao, “Favorable response to human adipose tissue-derived mesenchymal stem cells in steroid-refractory acute graft-versus-host disease,” Transplantation Proceedings, vol. 39, no. 10, pp. 3358–3362, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. B. Fang, Y. Song, Q. Lin et al., “Human adipose tissue-derived mesenchymal stromal cells as salvage therapy for treatment of severe refractory acute graft-vs.-host disease in two children,” Pediatric Transplantation, vol. 11, no. 7, pp. 814–817, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. B. Fang, Y. Song, R. C. Zhao, Q. Han, and Q. Lin, “Using human adipose tissue-derived mesenchymal stem cells as salvage therapy for hepatic graft-versus-host disease resembling acute hepatitis,” Transplantation Proceedings, vol. 39, no. 5, pp. 1710–1713, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. R. Yañez, M. L. Lamana, J. García-Castro, I. Colmenero, M. Ramírez, and J. A. Bueren, “Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease,” Stem Cells, vol. 24, no. 11, pp. 2582–2591, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. Y. Kuo, S. Goto, H. Shih et al., “Mesenchymal stem cells prolong composite tissue allotransplant survival in a swine model,” Transplantation, vol. 87, no. 12, pp. 1769–1777, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Kuo, C. Chen, S. Goto et al., “Modulation of immune response and T-cell regulation by donor adipose-derived stem cells in a rodent hind-limb allotransplant model,” Plastic and Reconstructive Surgery, vol. 128, no. 6, pp. 661e–672e, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. H. L. Trivedi, A. V. Vanikar, U. Thakker et al., “Human adipose tissue-derived mesenchymal stem cells combined with hematopoietic stem cell transplantation synthesize insulin,” Transplantation Proceedings, vol. 40, no. 4, pp. 1135–1139, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. E. M. Horwitz, K. Le Blanc, M. Dominici et al., “Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 7, no. 5, pp. 393–395, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. D. Baksh, J. E. Davies, and P. W. Zandstra, “Adult human bone marrow-derived mesenchymal progenitor cells are capable of adhesion-independent survival and expansion,” Experimental Hematology, vol. 31, no. 8, pp. 723–732, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. C. Dromard, P. Bourin, M. André, S. De Barros, L. Casteilla, and V. Planat-Benard, “Human adipose derived stroma/stem cells grow in serum-free medium as floating spheres,” Experimental Cell Research, vol. 317, no. 6, pp. 770–780, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Todaro, M. P. Alea, A. B. Di Stefano et al., “Colon Cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4,” Cell Stem Cell, vol. 1, no. 4, pp. 389–402, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Todaro, F. Iovino, V. Eterno et al., “Tumorigenic and metastatic activity of human thyroid cancer stem cells,” Cancer Research, vol. 70, no. 21, pp. 8874–8885, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. A. A. Leto Barone, G. Giunta, F. Toia, A. Cordova, and F. Moschella, “Adipose-derived stem cells: true or false? A different point of view,” Journal of Craniofacial Surgery, vol. 24, no. 4, p. 1072, 2013. View at Publisher · View at Google Scholar
  73. Y. Cao, Z. Sun, L. Liao, Y. Meng, Q. Han, and R. C. Zhao, “Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo,” Biochemical and Biophysical Research Communications, vol. 332, no. 2, pp. 370–379, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. Y. J. Kim, H. K. Kim, H. K. Cho, Y. C. Bae, K. T. Suh, and J. S. Jung, “Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia,” Cellular Physiology and Biochemistry, vol. 20, no. 6, pp. 867–876, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. F. Lu, H. Mizuno, C. A. Uysal, X. Cai, R. Ogawa, and H. Hyakusoku, “Improved viability of random pattern skin flaps through the use of adipose-derived stem cells,” Plastic and Reconstructive Surgery, vol. 121, no. 1, pp. 50–58, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. M. W. Blanton, I. Hadad, B. H. Johnstone et al., “Adipose stromal cells and platelet-rich plasma therapies synergistically increase revascularization during wound healing,” Plastic and Reconstructive Surgery, vol. 123, pp. 56S–64S, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Nambu, S. Kishimoto, S. Nakamura et al., “Accelerated wound healing in healing-impaired db/db mice by autologous adipose tissue-derived stromal cells combined with atelocollagen matrix,” Annals of Plastic Surgery, vol. 62, no. 3, pp. 317–321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Nambu, M. Ishihara, S. Nakamura et al., “Enhanced healing of mitomycin C-treated wounds in rats using inbred adipose tissue-derived stromal cells within an atelocollagen matrix,” Wound Repair and Regeneration, vol. 15, no. 4, pp. 505–510, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Keating, “Mesenchymal stromal cells: new directions,” Cell Stem Cell, vol. 10, pp. 709–716, 2012.
  80. J. M. Hare, J. H. Traverse, T. D. Henry et al., “A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction,” Journal of the American College of Cardiology, vol. 54, no. 24, pp. 2277–2286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. U. Ben-David, Y. Mayshar, and N. Benvenisty, “Large-scale analysis reveals acquisition of lineage-specific chromosomal aberrations in human adult stem cells,” Cell Stem Cell, vol. 9, no. 2, pp. 97–102, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. D. J. Prockop and A. Keating, “Relearning the lessons of genomic stability of human cells during expansion in culture: implications for clinical research,” Stem Cells, vol. 30, pp. 1051–1052, 2012.