About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 385641, 6 pages
http://dx.doi.org/10.1155/2013/385641
Review Article

Current Aspects in the Pathophysiology and Treatment of Chronic Wounds in Diabetes Mellitus

1Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technical University Medical Center, 01307 Dresden, Germany
2Endokrinologikum Ruhr, 44866 Bochum, Germany

Received 28 October 2012; Accepted 6 March 2013

Academic Editor: David G. Armstrong

Copyright © 2013 Elena Tsourdi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Singh, D. G. Armstrong, and B. A. Lipsky, “Preventing foot ulcers in patients with diabetes,” Journal of the American Medical Association, vol. 293, no. 2, pp. 217–228, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. D. J. Margolis, L. Allen-Taylor, O. Hoffstad, and J. A. Berlin, “Diabetic neuropathic foot ulcers and amputation,” Wound Repair and Regeneration, vol. 13, no. 3, pp. 230–236, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. T. K. Hunt, “Basic principles of wound healing,” Journal of Trauma, vol. 30, no. 12, supplement 1, pp. S122–S128, 1990. View at Scopus
  4. S. Werner and R. Grose, “Regulation of wound healing by growth factors and cytokines,” Physiological Reviews, vol. 83, no. 3, pp. 835–870, 2003.
  5. F. W. LoGerfo and J. D. Coffman, “Vascular and microvascular disease of the foot in diabetes. Implications for foot care,” New England Journal of Medicine, vol. 311, no. 25, pp. 1615–1619, 1984. View at Scopus
  6. M. D. Flynn and J. E. Tooke, “Aetiology of diabetic foot ulceration: a role for the microcirculation?” Diabetic Medicine, vol. 9, no. 4, pp. 320–329, 1992. View at Scopus
  7. P. J. Hennessey, E. G. Ford, C. T. Black, and R. J. Andrassy, “Wound collagenase activity correlates directly with collagen glycosylation in diabetic rats,” Journal of Pediatric Surgery, vol. 25, no. 1, pp. 75–78, 1990. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Spravchikov, G. Sizyakov, M. Gartsbein, D. Accili, T. Tennenbaum, and E. Wertheimer, “Glucose effects on skin keratinocytes: implications for diabetes skin complications,” Diabetes, vol. 50, no. 7, pp. 1627–1635, 2001. View at Scopus
  9. M. Markuson, D. Hanson, J. Anderson et al., “The relationship between hemoglobin A(1c) values and healing time for lower extremity ulcers in individuals with diabetes,” Advances in Skin & Wound Care, vol. 22, no. 8, pp. 365–372, 2009. View at Scopus
  10. W. Marhoffer, M. Stein, E. Maeser, and K. Federlin, “Impairment of polymorphonuclear leukocyte function and metabolic control of diabetes,” Diabetes Care, vol. 15, no. 2, pp. 256–260, 1992. View at Scopus
  11. A. L. McMurtry, K. Cho, L. J. T. Young, C. F. Nelson, and D. G. Greenhalgh, “Expression of HSP70 in healing wounds of diabetic and nondiabetic mice,” Journal of Surgical Research, vol. 86, no. 1, pp. 36–41, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. T. J. Fahey, A. Sadaty, W. G. Jones, A. Barber, B. Smoller, and G. T. Shires, “Diabetes impairs the late inflammatory response to wound healing,” Journal of Surgical Research, vol. 50, no. 4, pp. 308–313, 1991. View at Scopus
  13. E. B. Jude, R. Blakytny, J. Bulmer, A. J. M. Boulton, and M. W. J. Ferguson, “Transforming growth factor-beta 1, 2, 3 and receptor type I and II in diabetic foot ulcers,” Diabetic Medicine, vol. 19, no. 6, pp. 440–447, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Falanga and W. H. Eaglstein, “The “trap” hypothesis of venous ulceration,” The Lancet, vol. 341, no. 8851, pp. 1006–1008, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. W. C. Duckworth, J. Fawcett, S. Reddy, and J. C. Page, “Insulin-degrading activity in wound fluid,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 2, pp. 847–851, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Vaalamo, T. Leivo, and U. Saarialho-Kere, “Differential expression of tissue inhibitors of metalloproteinases (TIMP-1, -2, -3, and -4) in normal and aberrant wound healing,” Human Pathology, vol. 30, no. 7, pp. 795–802, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. V.-M. Kähari and W. K. Saariahlo-Kere, “Matrix metalloproteinases in skin,” Experimental Dermatology, vol. 6, no. 5, pp. 199–213, 1997.
  18. A. B. Wysocki, L. Staiano-Coico, and F. Grinnell, “Wound fluid from chronic leg ulcers contains elevated levels of metalloproteinases MMP-2 and MMP-9,” Journal of Investigative Dermatology, vol. 101, no. 1, pp. 64–68, 1993. View at Scopus
  19. R. Lobmann, A. Ambrosch, G. Schultz, K. Waldmann, S. Schiweck, and H. Lehnert, “Expression of matrix-metalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients,” Diabetologia, vol. 45, no. 7, pp. 1011–1016, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Stanley and T. Osler, “Senescence and the healing rates of venous ulcers,” Journal of Vascular Surgery, vol. 33, no. 6, pp. 1206–1211, 2001.
  21. F. L. Game, R. J. Hinchliffe, J. Apelqvist et al., “A systematic review to enhance the healing of chronic ulcers of the foot in diabetes,” Diabetes/Metabolism Research and Reviews, vol. 28, supplement 1, pp. 119–141, 2012.
  22. K. A. Gordon, E. A. Lebrun, M. Tomic-Canic, and R. S. Kirsner, “The role of surgical debridement in healing of diabetic foot ulcers,” Skinmed, vol. 10, no. 1, pp. 24–26, 2012.
  23. B. A. Lipsky, E. J. Peters, E. Senneville et al., “Expert opinion on the management of infections in the diabetic foot,” Diabetes/Metabolism Research and Reviews, vol. 28, supplement 1, pp. 163–178, 2012.
  24. J. C. Dumville, S. Deshpande, S. O'Meara , and K. Speak, “Hydrocolloid dressings for healing diabetic foot ulcers,” Cochrane Database of Systematic Reviews, vol. 15, no. 2, 2012.
  25. S. A. Bus, “Priorities in offloading the diabetic foot,” Diabetes/Metabolism Research and Reviews, vol. 28, supplement 1, pp. 54–59, 2012.
  26. A. Andreassi, R. Bilenchi, M. Biagioli, and C. D'Aniello, “Classification and pathophysiology of skin grafts,” Clinics in Dermatology, vol. 23, no. 4, pp. 332–337, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. G. P. Jolly, T. Zgonis, and P. Blume, “Soft tissue reconstruction of the diabetic foot,” Clinics in Podiatric Medicine and Surgery, vol. 20, no. 4, pp. 757–781, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. S. M. Mahmoud, A. A. Mohamed, S. E. Mahdi, and M. E. Ahmed, “Split-skin graft in the management of diabetic foot ulcers,” Journal of Wound Care, vol. 17, no. 7, pp. 303–306, 2008. View at Scopus
  29. T. Zgonis, J. J. Stapleton, and T. S. Roukis, “Advanced plastic surgery techniques for soft tissue coverage of the diabetic foot,” Clinics in Podiatric Medicine and Surgery, vol. 24, no. 3, pp. 547–568, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Stiefel, C. Schiestl, and M. Meuli, “Integra Artificial Skin for burn scar revision in adolescents and children,” Burns, vol. 36, no. 1, pp. 114–120, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. W. A. Marston, J. Hanft, P. Norwood, and R. Pollak, “The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial,” Diabetes Care, vol. 26, no. 6, pp. 1701–1705, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Veves, V. Falanga, D. G. Armstrong, and M. L. Sabolinski, “Graftskin, a human skin equivalent, is effective in the management of noninfected neuropathic diabetic foot ulcers: a prospective randomized multicenter clinical trial,” Diabetes Care, vol. 24, no. 2, pp. 290–295, 2001. View at Scopus
  33. H. Brem and M. Tomic-Canic, “Cellular and molecular basis of wound healing in diabetes,” Journal of Clinical Investigation, vol. 117, no. 5, pp. 1219–1222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. Z. J. Liu and O. C. Velazquez, “Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing,” Antioxidants and Redox Signaling, vol. 10, no. 11, pp. 1869–1882, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Fiorina, G. Pietramaggiori, S. S. Scherer et al., “The mobilization and effect of endogenous bone marrow progenitor cells in diabetic wound healing,” Cell Transplantation, vol. 19, no. 11, pp. 1369–1381, 2010.
  36. E. V. Badiavas and V. Falanga, “Treatment of chronic wounds with bone marrow-derived cells,” Archives of Dermatology, vol. 139, no. 4, pp. 510–516, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. K. A. Gallagher, Z. J. Liu, M. Xiao et al., “Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α,” Journal of Clinical Investigation, vol. 117, no. 5, pp. 1249–1259, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Coraux, C. Hilmi, M. Rouleau et al., “Reconstituted skin from murine embryonic stem cells,” Current Biology, vol. 13, no. 10, pp. 849–853, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Bagutti, C. Hutter, R. Chiquet-Ehrismann, R. Fässler, and F. M. Watt, “Dermal fibroblast-derived growth factors restore the ability of β1 integrin-deficient embryonal stem cells to differentiate into keratinocytes,” Developmental Biology, vol. 231, no. 2, pp. 321–333, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. C. K. Kaufman, P. Zhou, H. A. Pasolli et al., “GATA-3: an unexpected regulator of cell lineage determination in skin,” Genes and Development, vol. 17, no. 17, pp. 2108–2122, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. P. A. Conget and J. J. Minguell, “Adenoviral-mediated gene transfer into ex vivo expanded human bone marrow mesenchymal progenitor cells,” Experimental Hematology, vol. 28, no. 4, pp. 382–390, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. T. J. Wieman, J. M. Smiell, and Y. Su, “Efficacy and safety of a topical gel formulation of recombinant human platelet-derived growth factor-BB (becaplermin) in patients with chronic neuropathic diabetic ulcers: a phase III randomized placebo-controlled double-blind study,” Diabetes Care, vol. 21, no. 5, pp. 822–827, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Papanas and E. Maltezos, “Benefit-risk assessment of becaplermin in the treatment of diabetic foot ulcers,” Drug Safety, vol. 33, no. 6, pp. 455–461, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. M. T. Eginton, K. R. Brown, G. R. Seabrook, J. B. Towne, and R. A. Cambria, “A prospective randomized evaluation of negative-pressure wound dressing for diabetic foot wounds,” Annals of Vascular Surgery, vol. 17, no. 6, pp. 645–649, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. D. G. Armstrong and L. A. Lavery, “Negative pressure wound therapy after partial diabetic foot amputation: a multicentre, randomised controlled trial,” The Lancet, vol. 366, no. 9498, pp. 1704–1710, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. F. Gottrup and J. Apelqvist, “Present and new techniques and devices in the treatment of DFU: a critical review of evidence,” Diabetes/Metabolism Research and Reviews, vol. 28, supplement 1, pp. 64–71, 2012.
  47. A. Akbari, H. Moodi, F. Ghiasi, H. M. Sagheb, and H. Rashidi, “Effects of vacuum-compression therapy on healing of diabetic foot ulcers: randomized controlled trial,” Journal of Rehabilitation Research and Development, vol. 44, no. 5, pp. 631–636, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Mars, Y. Desai, and M. A. Gregory, “Compressed air massage hastens healing of the diabetic foot,” Diabetes Technology and Therapeutics, vol. 10, no. 1, pp. 39–45, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. D. T. Ubbink, S. J. Westerbos, D. Evans, L. Land, and H. Vermeulen, “Topical negative pressure for treating chronic wounds,” Cochrane Database of Systematic Reviews, no. 3, 2008. View at Publisher · View at Google Scholar · View at Scopus