About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 386063, 14 pages
http://dx.doi.org/10.1155/2013/386063
Research Article

Lignocellulosic Fermentation of Wild Grass Employing Recombinant Hydrolytic Enzymes and Fermentative Microbes with Effective Bioethanol Recovery

Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India

Received 2 April 2013; Accepted 4 August 2013

Academic Editor: Chiu-Chung Young

Copyright © 2013 Saprativ P. Das et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. D. Oliveira, E. J. Rykiel Jr., and M. E. Vaughan, “Ethanol as fuel: energy, carbon dioxide balances, and ecological footprint,” BioScience, vol. 55, no. 7, pp. 593–602, 2005. View at Scopus
  2. Y. Sun and J. Cheng, “Hydrolysis of lignocellulosic materials for ethanol production: a review,” Bioresource Technology, vol. 83, no. 1, pp. 1–11, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Kumar, D. M. Barrett, M. J. Delwiche, and P. Stroeve, “Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production,” Industrial and Engineering Chemistry Research, vol. 48, no. 8, pp. 3713–3729, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Schulein, “Cellulases of Trichoderma reesei,” in Methods in Enzymology, W. A. Wood and J. N. Abelson, Eds., vol. 160, pp. 234–242, 1988.
  5. C. M. G. A. Fontes and H. J. Gilbert, “Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates,” Annual Review of Biochemistry, vol. 79, pp. 655–681, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Mutreja, D. Das, D. Goyal, and A. Goyal, “Bioconversion of agricultural waste to ethanol by SSF using recombinant cellulase from Clostridium thermocellum,” Enzyme Research, vol. 2011, Article ID 340279, 6 pages, 2011. View at Publisher · View at Google Scholar
  7. R. L. Howard, E. Abotsi, E. L. J. Van Rensburg, and S. Howard, “Lignocellulose biotechnology: issues of bioconversion and enzyme production,” African Journal of Biotechnology, vol. 2, no. 12, pp. 702–733, 2003. View at Scopus
  8. R. K. Sukumaran, R. R. Singhania, G. M. Mathew, and A. Pandey, “Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production,” Renewable Energy, vol. 34, no. 2, pp. 421–424, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Pandey, C. R. Soccol, P. Nigam, and V. T. Soccol, “Biotechnological potential of agro-industrial residues. I: sugarcane bagasse,” Bioresource Technology, vol. 74, no. 1, pp. 69–80, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Das and S. K. Singh, “Useful by-products from cellulosic wastes of agriculture and food industry—a critical appraisal,” Critical Reviews in Food Science and Nutrition, vol. 44, no. 2, pp. 77–89, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. K. L. Kadam and S. L. Schmidt, “Evaluation of Candida acidothermophilum in ethanol production from lignocellulosic biomass,” Applied Microbiology and Biotechnology, vol. 48, no. 6, pp. 709–713, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Palmqvist, B. Hahn-Hägerdal, M. Galbe et al., “Design and operation of a bench-scale process development unit for the production of ethanol from lignocellulosics,” Bioresource Technology, vol. 58, no. 2, pp. 171–179, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Bharali, R. K. Purama, A. Majumder, C. M. G. A. Fontes, and A. Goyal, “Molecular cloning and biochemical properties of family 5 glycoside hydrolase of bi-functional cellulase from Clostridium thermocellum,” Indian Journal of Microbiology, vol. 45, no. 4, pp. 317–321, 2005. View at Scopus
  14. E. J. Taylor, A. Goyal, C. I. P. D. Guerreiro et al., “How family 26 glycoside hydrolases orchestrate catalysis on different polysaccharides: structure and activity of a Clostridium thermocellum lichenase, CtLic26A,” Journal of Biological Chemistry, vol. 280, no. 38, pp. 32761–32767, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 1989.
  16. S. P. Das, R. Ravindran, S. Ahmed et al., “Bioethanol production involving recombinant C. thermocellum hydrolytic hemicellulase and fermentative microbes,” Applied Biochemistry and Biotechnology, vol. 67, no. 6, pp. 1475–1488, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. L. J. Wickerman, “Taxonomy of yeasts,” US Department of Agriculture Technical Bulletin no. 1029, Washington, DC, USA, 1951.
  18. N. Nelson, “A photometric adaptation of the Somogyi method for the determination of glucose,” Journal of Biological Chemistry, vol. 153, pp. 375–380, 1944.
  19. M. Somogyi, “Determination of blood sugar,” Journal of Biological Chemistry, vol. 160, pp. 69–73, 1945.
  20. N. Sharma, K. L. Kalra, H. S. Oberoi, and S. Bansal, “Optimization of fermentation parameters for production of ethanol from kinnow waste and banana peels by simultaneous saccharification and fermentation,” Indian Journal of Microbiology, vol. 47, no. 4, pp. 310–316, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. B. C. Okeke and S. K. C. Obi, “Saccharification of agro-waste materials by fungal cellulases and hemicellulases,” Bioresource Technology, vol. 51, no. 1, pp. 23–27, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. H.-B. Seo, H.-J. Kim, O.-K. Lee, J.-H. Ha, H.-Y. Lee, and K.-H. Jung, “Measurement of ethanol concentration using solvent extraction and dichromate oxidation and its application to bioethanol production process,” Journal of Industrial Microbiology and Biotechnology, vol. 36, no. 2, pp. 285–292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Sluiter, B. Hames, R. Ruiz et al., “Determination of structural carbohydrates and lignin in substrates,” Tech. Rep. NREL/TP-510, Laboratory Analytical Procedure (LAP), 2008.
  24. M. P. Van Gool, I. Vancsó, H. A. Schols, K. Toth, G. Szakacs, and H. Gruppen, “Screening for distinct xylan degrading enzymes in complex shake flask fermentation supernatants,” Bioresource Technology, vol. 102, no. 10, pp. 6039–6047, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Scopus
  26. V. V. R. Bandaru, S. R. Somalanka, D. R. Mendu, N. R. Madicherla, and A. Chityala, “Optimization of fermentation conditions for the production of ethanol from sago starch by co-immobilized amyloglucosidase and cells of Zymomonas mobilis using response surface methodology,” Enzyme and Microbial Technology, vol. 38, no. 1-2, pp. 209–214, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. W. Johnston, R. Cord-Ruwisch, and M. J. Cooney, “Industrial control of recombinant E. coli fed-batch culture: new perspectives on traditional controlled variables,” Bioprocess and Biosystems Engineering, vol. 25, no. 2, pp. 111–120, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Li, N.-J. Kim, M. Jiang, J. W. Kang, and H. N. Chang, “Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production,” Bioresource Technology, vol. 100, no. 13, pp. 3245–3251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. H. D. Mansilla, J. Baeza, S. Urzúa, G. Maturana, J. Villaseñor, and N. Durán, “Acid-catalysed hydrolysis of rice hull: evaluation of furfural production,” Bioresource Technology, vol. 66, no. 3, pp. 189–193, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. A. K. Chandel, R. K. Kapoor, A. Singh, and R. C. Kuhad, “Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501,” Bioresource Technology, vol. 98, no. 10, pp. 1947–1950, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Zhang, F. Wang, R. Su, W. Qi, and Z. He, “Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment,” Bioresource Technology, vol. 101, no. 13, pp. 4959–4964, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Sánchez, V. Bravo, E. Castro, A. J. Moya, and F. Camacho, “The influence of pH and aeration rate on the fermentation of D-xylose by Candida shehatae,” Enzyme and Microbial Technology, vol. 21, no. 5, pp. 355–360, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. K.-K. Oh, S.-W. Kim, Y.-S. Jeong, and S.-I. Hong, “Bioconversion of cellulose into ethanol by nonisothermal simultaneous saccharification and fermentation,” Applied Biochemistry and Biotechnology, vol. 89, no. 1, pp. 15–30, 2000. View at Scopus
  34. Y. Harish Kumar Reddy, M. Srijana, D. M. Reddy, and R. Gopal, “Coculture fermentation of banana agro-waste to ethanol by cellulolytic thermophilic Clostridium thermocellum CT2,” African Journal of Biotechnology, vol. 9, no. 13, pp. 1926–1934, 2010. View at Scopus
  35. E. Ruiz, C. Cara, M. Ballesteros, P. Manzanares, I. Ballesteros, and E. Castro, “Ethanol production from pretreated olive tree wood and sunflower stalks by an SSF process,” Applied Biochemistry and Biotechnology, vol. 130, no. 1–3, pp. 631–643, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Lever, G. Ho, and R. Cord-Ruwisch, “Ethanol from lignocellulose using crude unprocessed cellulase from solid-state fermentation,” Bioresource Technology, vol. 101, no. 18, pp. 7094–7098, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Sasikumar and T. Viruthagiri, “Simultaneous saccharification and fermentation (SSF) of sugarcane bagasse—kinetics and modeling,” International Journal of Chemical and Biological Engineering, vol. 3, no. 2, pp. 57–64, 2010.