About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 390789, 9 pages
http://dx.doi.org/10.1155/2013/390789
Research Article

Identification, Selection, and Enrichment of Cardiomyocyte Precursors

1Department of Biophysics, Gene Therapy Investigation Center, Universidade Federal de São Paulo, Rua Mirassol 207, 04044-010 São Paulo, SP, Brazil
2Department of Surgery, Universidade Federal de São Paulo, São Paulo, SP, Brazil

Received 14 February 2013; Revised 12 May 2013; Accepted 25 May 2013

Academic Editor: Sanford I. Bernstein

Copyright © 2013 Bianca Ferrarini Zanetti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. L. Roger, A. S. Go, D. M. Lloyd-Jones, et al., “Heart disease and stroke statistics—2012 update: a report from the American Heart Association,” Circulation, vol. 125, article e2-e220, 2012.
  2. M. Jessup and S. Brozena, “Medical progress: heart failure,” The New England Journal of Medicine, vol. 348, no. 20, pp. 2007–2018, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. E. G. Nabel and E. Braunwald, “A tale of coronary artery disease and myocardial infarction,” The New England Journal of Medicine, vol. 366, no. 1, pp. 54–63, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Zimmet and H. Krum, “Using adult stem cells to treat heart failure-fact or fiction?” Heart Lung and Circulation, vol. 17, supplement 4, pp. S48–S54, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. A. P. Beltrami, L. Barlucchi, D. Torella et al., “Adult cardiac stem cells are multipotent and support myocardial regeneration,” Cell, vol. 114, no. 6, pp. 763–776, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Kehat, D. Kenyagin-Karsenti, M. Snir et al., “Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes,” Journal of Clinical Investigation, vol. 108, no. 3, pp. 407–414, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Vogel, “Ready or not? Human ES cells head toward the clinic,” Science, vol. 308, no. 5728, pp. 1534–1538, 2005.
  8. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Bianco, P. G. Robey, and P. J. Simmons, “Mesenchymal stem cells: revisiting history, concepts, and assays,” Cell Stem Cell, vol. 2, no. 4, pp. 313–319, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. R. Williams and J. M. Hare, “Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease,” Circulation Research, vol. 109, no. 8, pp. 923–940, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. S. Choi, G. J. Dusting, S. Stubbs et al., “Differentiation of human adipose-derived stem cells into beating cardiomyocytes,” Journal of Cellular and Molecular Medicine, vol. 14, no. 4, pp. 878–889, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Fukuda, “Development of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering,” Artificial Organs, vol. 25, no. 3, pp. 187–193, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. K. G. Gaustad, A. C. Boquest, B. E. Anderson, A. M. Gerdes, and P. Collas, “Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes,” Biochemical and Biophysical Research Communications, vol. 314, no. 2, pp. 420–427, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Makino, K. Fukuda, S. Miyoshi et al., “Cardiomyocytes can be generated from marrow stromal cells in vitro,” Journal of Clinical Investigation, vol. 103, no. 5, pp. 697–705, 1999. View at Scopus
  15. S. Rangappa, C. Fen, E. H. Lee, et al., “Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes,” Annals of Thoracic Surgery, vol. 75, no. 3, pp. 775–779, 2003.
  16. S. H. Choi, S. Y. Jung, S. M. Kwon, et al., “Perspectives on stem cell therapy for cardiac regeneration,” Circulation Journal, vol. 76, no. 6, pp. 1307–1312, 2012.
  17. D. Bernhard and G. Laufer, “The aging cardiomyocyte: a mini-review,” Gerontology, vol. 54, no. 1, pp. 24–31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. C. de Diego, F. Chen, L.-H. Xie et al., “Cardiac alternans in embryonic mouse ventricles,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 294, no. 1, pp. H433–H440, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Nishi, N. M. Kumar, and N. B. Gilula, “Developmental regulation of gap junction gene expression during mouse embryonic development,” Developmental Biology, vol. 146, no. 1, pp. 117–130, 1991. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Zeller, K. D. Bloch, B. S. Williams, R. J. Arceci, and C. E. Seidman, “Localized expression of the atrial natriuretic factor gene during cardiac embryogenesis,” Genes & Development, vol. 1, no. 7, pp. 693–698, 1987. View at Scopus
  21. M. Wankerl, K. R. Boheler, M. Y. Fiszman, and K. Schwartz, “Molecular cloning and analysis of the human cardiac sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2) gene promoter,” Journal of Molecular and Cellular Cardiology, vol. 28, no. 10, pp. 2139–2150, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. D. A. Rubinson, C. P. Dillon, A. V. Kwiatkowski, et al., “A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference,” Nature Genetics, vol. 33, no. 3, pp. 401–406, 2003.
  23. J. R. de Leon, P. M. Buttrick, and G. I. Fishman, “Functional analysis of the connexin43 gene promoter in vivo and in vitro,” Journal of Molecular and Cellular Cardiology, vol. 26, no. 3, pp. 379–389, 1994. View at Publisher · View at Google Scholar · View at Scopus
  24. C. O. Echetebu, M. Ali, M. G. Izban, L. MacKay, and R. E. Garfield, “Localization of regulatory protein binding sites in the proximal region of human myometrial connexin 43 gene,” Molecular Human Reproduction, vol. 5, no. 8, pp. 757–766, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. L. J. Field, “Atrial natriuretic factor-SV40 T antigen transgenes produce tumors and cardiac arrhythmias in mice,” Science, vol. 239, no. 4843, pp. 1029–1033, 1988. View at Scopus
  26. E. Geimonen, W. Jiang, M. Ali, G. I. Fishman, R. E. Garfield, and J. Andersen, “Activation of protein kinase C in human uterine smooth muscle induces connexin-43 gene transcription through an AP-1 site in the promoter sequence,” Journal of Biological Chemistry, vol. 271, no. 39, pp. 23667–23674, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. R. B. DuBridge, P. Tang, and H. C. Hsia, “Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system,” Molecular and Cellular Biology, vol. 7, no. 1, pp. 379–387, 1987. View at Scopus
  28. G. J. Todaro and H. Green, “Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines,” Journal of Cell Biology, vol. 17, pp. 299–313, 1963.
  29. B. W. Kimes and B. L. Brandt, “Properties of a clonal muscle cell line from rat heart,” Experimental Cell Research, vol. 98, no. 2, pp. 367–381, 1976. View at Scopus
  30. K. Takahashi, Y. Sawasaki, J.-I. Hata, K. Mukai, and T. Goto, “Spontaneous transformation and immortalization of human endothelial cells,” In Vitro Cellular and Developmental Biology, vol. 26, no. 3, pp. 265–274, 1990. View at Scopus
  31. P. A. Zuk, M. Zhu, P. Ashjian et al., “Human adipose tissue is a source of multipotent stem cells,” Molecular Biology of the Cell, vol. 13, no. 12, pp. 4279–4295, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. I. Barde, P. Salmon, and D. Trono, “Production and titration of lentiviral vectors,” Current Protocols in Neuroscience, no. 53, pp. 4.21.1–4.21.23, 2010.
  33. K. Okita, M. Nakagawa, H. Hyenjong, T. Ichisaka, and S. Yamanaka, “Generation of mouse induced pluripotent stem cells without viral vectors,” Science, vol. 322, no. 5903, pp. 949–953, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Boshart, F. Weber, and G. Jahn, “A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus,” Cell, vol. 41, no. 2, pp. 521–530, 1985. View at Scopus
  35. P. Thomas and T. G. Smart, “HEK293 cell line: a vehicle for the expression of recombinant proteins,” Journal of Pharmacological and Toxicological Methods, vol. 51, no. 3, pp. 187–200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Geraerts, S. Willems, V. Baekelandt, Z. Debyser, and R. Gijsbers, “Comparison of lentiviral vector titration methods,” BMC Biotechnology, vol. 6, article 34, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Y. Qin, L. Zhang, K. L. Clift et al., “Systematic comparison of constitutive promoters and the doxycycline-inducible promoter,” Plos One, vol. 5, no. 5, article e10611, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Mastromarino, C. Conti, P. Goldoni, B. Hauttecoeur, and N. Orsi, “Characterization of membrane components of the erythrocyte involved in vesicular stomatitis virus attachment and fusion at acidic pH,” Journal of General Virology, vol. 68, part 9, 1987. View at Scopus
  39. F. B. Engel, M. Schebesta, M. T. Duong et al., “p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes,” Genes and Development, vol. 19, no. 10, pp. 1175–1187, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. D. H. Kim, K. H. Yoo, K. S. Choi, et al., “Gene expression profile of cytokine and growth factor during differentiation of bone marrow-derived mesenchymal stem cell,” Cytokine, vol. 31, no. 2, pp. 119–126, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. A. K. Sharma, N. J. Fuller, R. R. Sullivan et al., “Defined populations of bone marrow derived mesenchymal stem and endothelial progenitor cells for bladder regeneration,” Journal of Urology, vol. 182, no. 4, pp. 1898–1905, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Van Tuyn, D. A. Pijnappels, A. A. F. de Vries et al., “Fibroblasts from human postmyocardial infarction scars acquire properties of cardiomyocytes after transduction with a recombinant myocardin gene,” FASEB Journal, vol. 21, no. 12, pp. 3369–3379, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. F.-B. Zhang, L. Li, B. Fang, D.-L. Zhu, H.-T. Yang, and P.-J. Gao, “Passage-restricted differentiation potential of mesenchymal stem cells into cardiomyocyte-like cells,” Biochemical and Biophysical Research Communications, vol. 336, no. 3, pp. 784–792, 2005. View at Publisher · View at Google Scholar · View at Scopus