About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 391549, 6 pages
http://dx.doi.org/10.1155/2013/391549
Research Article

Evaluation of hsp65 Nested PCR-Restriction Analysis (PRA) for Diagnosing Tuberculosis in a High Burden Country

1Post Graduation Program in Biosciences Applied to Pharmacy, Department of Clinical Analyses and Biomedicine, State University of Maringa, 87020-900 Maringá, PR, Brazil
2School of Pharmaceutical Sciences, Department of Biological Sciences, Paulista State University, Araraquara, 14800-901 São Paulo, SP, Brazil
3Department of Clinical Analyses and Biomedicine, State University of Maringa, 87020-900 Maringá, PR, Brazil
4Center of Medical and Pharmaceutical Sciences, State University of Western of Parana, 85819-110 Cascavel, PR, Brazil
5School of Pharmaceutical Science, University of São Paulo, 05508-900 São Paulo, SP, Brazil

Received 22 May 2013; Accepted 8 September 2013

Academic Editor: Andrea Savarino

Copyright © 2013 Sara Macente et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. “World Health Organization: global tuberculosis control,” WHO Report, 2011, http://www.who.int/tb/publications/global_report/en/index.html.
  2. A. Sajduda, A. Martin, F. Portaels, and J. C. Palomino, “hsp65 PCR-restriction analysis (PRA) with capillary electrophoresis in comparison to three other methods for identification of Mycobacterium species,” Journal of Microbiological Methods, vol. 80, no. 2, pp. 190–197, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. T. L. Wu, J. H. Chia, A. J. Kuo, T. S. Su, T. S. Wu, and H. C. Lai, “Rapid identification of mycobacteria from smear-positive sputum samples by nested PCR-restriction fragment length polymorphism analysis,” Journal of Clinical Microbiology, vol. 46, no. 11, pp. 3591–3594, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. D. E. Griffith, T. Aksamit, B. A. Brown-Elliott, A. Catanzaro, C. Daley, and F. Gordin, “ATS mycobacterial diseases subcommitte, American thoracic society, infectious disease society of America. An official American thoracic society/infectious diseases society of America statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases,” The American Journal of Respiratory and Critical Care Medicine, vol. 175, pp. 367–416, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. J. L. Cloud, H. Neal, R. Rosenberry et al., “Identification of Mycobacterium spp. by using a commercial 16S ribosomal DNA sequencing kit and additional sequencing libraries,” Journal of Clinical Microbiology, vol. 40, no. 2, pp. 400–406, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Mokaddas and S. Ahmad, “Development and evaluation of a multiplex PCR for rapid detection and differentiation of Mycobacterium tuberculosis complex members from non-tuberculous mycobacteria,” Japanese Journal of Infectious Diseases, vol. 60, no. 2-3, pp. 140–144, 2007. View at Scopus
  7. P. C. Soo, Y. T. Horng, P. R. Hsueh et al., “Direct and simultaneous identification of Mycobacterium tuberculosis complex (MTBC) and Mycobacterium tuberculosis (MTB) by rapid multiplex nested PCR-ICT assay,” Journal of Microbiological Methods, vol. 66, no. 3, pp. 440–448, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. S. S. S. Lima, W. T. Clemente, M. Palaci, R. V. Rosa, C. M. F. Antunes, and J. C. Serufo, “Conventional and molecular techniques in the diagnosis of pulmonary tuberculosis: a comparative study,” Jornal Brasileiro de Pneumologia, vol. 34, no. 12, pp. 1056–1062, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. I. K. Neonakis, Z. Gitti, E. Krambovitis, and D. A. Spandidos, “Molecular diagnostic tools in mycobacteriology,” Journal of Microbiological Methods, vol. 75, no. 1, pp. 1–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Sankar, S. Kuppanan, B. Balakrisnan, and B. Nandagopal, “Analysis of sequence diversity among IS6110 sequence of Mycobacterium tuberculosis: possible implications for PCR based detection,” Bioinformation, vol. 6, no. 7, pp. 283–285, 2011.
  11. A. Telenti, F. Marchesi, M. Balz, F. Bally, E. C. Böttger, and T. Bodmer, “Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis,” Journal of Clinical Microbiology, vol. 31, no. 2, pp. 175–178, 1993. View at Scopus
  12. F. Pourahmad, K. D. Thompson, A. Adams, and R. H. Richards, “Comparative evaluation of polymerase chain reaction—restriction enzyme analysis (PRA) and sequencing of heat shock protein 65 (hsp65) gene for identification of aquatic mycobacteria,” Journal of Microbiological Methods, vol. 76, no. 2, pp. 128–135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Brunello, M. Ligozzi, E. Cristelli, S. Bonora, E. Tortoli, and R. Fontana, “Identification of 54 mycobacterial species by PCR-restriction fragment length polymorphism analysis of the hsp65 gene,” Journal of Clinical Microbiology, vol. 39, no. 8, pp. 2799–2806, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Kim, E. M. Park, O. J. Kwon et al., “Direct application of the PCR restriction analysis method for identifying NTM species in AFB smear-positive respiratory specimens,” International Journal of Tuberculosis and Lung Disease, vol. 12, no. 11, pp. 1344–1346, 2008. View at Scopus
  15. B. J. Kim, J. H. Park, S. A. Lee et al., “Differentiation of mycobacteria in sputa by duplex polymerase chain reaction for mycobacterial hsp65 gene,” Diagnostic Microbiology and Infectious Disease, vol. 62, no. 2, pp. 193–198, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Kudoh and T. Kudoh, “A simple technique for culturing tubercle bacilli,” Bulletin of the World Health Organization, vol. 51, no. 1, pp. 71–82, 1974. View at Scopus
  17. P. T. Kent and G. P. Kubica, Public Health Mycobacteriology. A Guide for the Level III Laboratory, U.S. Department of Health and Human Services, CDC, Atlanta, Ga, USA, 1985.
  18. J. A. Jarzembowski and M. B. Young, “Nontuberculous mycobacterial infections,” Archives of Pathology and Laboratory Medicine, vol. 132, no. 8, pp. 1333–1341, 2008. View at Scopus
  19. C. C. Lai, C. K. Tan, C. H. Chou et al., “Increasing incidence of nontuberculous mycobacteria, Taiwan, 2000–2008,” Emerging Infectious Diseases, vol. 16, no. 2, pp. 294–296, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. T. K. Marras, P. Chedore, A. M. Ying, and F. Jamieson, “Isolation prevalence of pulmonary non-tuberculous mycobacteria in Ontario, 1997–2003,” Thorax, vol. 62, no. 8, pp. 661–666, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. J. E. Moore, M. E. Kruijshaar, L. P. Ormerod, F. Drobniewski, and I. Abubakar, “Increasing reports of non-tuberculous mycobacteria in England, Wales and Northern Ireland, 1995–2006,” BMC Public Health, vol. 10, article 612, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. R. W. Wilson, V. A. Steingrube, E. C. Böttger et al., “Mycobacterium immunogenum sp. nov., a novel species related to Mycobacterium abscessus and associated with clinical disease, pseudo outbreaks and contaminated metalworking fluids: an international cooperative study on mycobacterial taxonomy,” International Journal of Systematic and Evolutionary Microbiology, vol. 51, no. 5, pp. 1751–1764, 2001. View at Scopus
  23. C. Dye, S. Scheele, P. Dolin, V. Pathania, and M. Raviglione, “Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country,” The Journal of the American Medical Association, vol. 282, no. 7, pp. 677–686, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Kim, H. Lee, M. K. Lee et al., “Development and application of multiprobe real-time PCR method targeting the hsp65 gene for differentiation of Mycobacterium species from isolates and sputum specimens,” Journal of Clinical Microbiology, vol. 48, no. 9, pp. 3073–3080, 2010. View at Publisher · View at Google Scholar · View at Scopus