About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 392058, 7 pages
http://dx.doi.org/10.1155/2013/392058
Research Article

In Vitro Antibacterial and Antibiofilm Activities of Chlorogenic Acid against Clinical Isolates of Stenotrophomonas maltophilia including the Trimethoprim/Sulfamethoxazole Resistant Strain

1Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400 Serdang, Malaysia
2La Balme Microbiology Unit, BioMérieux, 3 route de Port Michaud, 38390 La Balme-les-Grottes, France

Received 7 August 2012; Revised 19 September 2012; Accepted 3 October 2012

Academic Editor: Isabel Sá-Correia

Copyright © 2013 Arunkumar Karunanidhi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. E. Falagas, P. E. Valkimadi, Y. T. Huang, D. K. Matthaiou, and P. R. Hsueh, “Therapeutic options for Stenotrophomonas maltophilia infections beyond co-trimoxazole: a systematic review,” Journal of Antimicrobial Chemotherapy, vol. 62, no. 5, pp. 889–894, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. R. J. Bywater and M. W. Casewell, “An assessment of the impact of antibiotic resistance in different bacterial species and of the contribution of animal sources to resistance in human infections,” Journal of Antimicrobial Chemotherapy, vol. 46, no. 4, pp. 643–645, 2000. View at Scopus
  3. M. Denton and K. G. Kerr, “Microbiological and clinical aspects of infection associated with Stenotrophomonas maltophilia,” Clinical Microbiology Reviews, vol. 11, no. 1, pp. 57–80, 1998. View at Scopus
  4. R. Barbolla, M. Catalano, B. E. Orman et al., “Class 1 integrons increase Trimethoprim-sulfamethoxazole MICs against epidemiologically unrelated Stenotrophomonas maltophilia isolates,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 2, pp. 666–669, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. M. A. Toleman, P. M. Bennett, D. M. C. Bennett, R. N. Jones, and T. R. Walsh, “Global emergence of trimethoprim/sulfamethoxazole resistance in Stenotrophomonas maltophilia mediated by acquisition of sul genes,” Emerging Infectious Diseases, vol. 13, no. 4, pp. 559–565, 2007. View at Scopus
  6. S. Fattouch, P. Caboni, V. Coroneo et al., “Antimicrobial activity of tunisian quince (Cydonia oblonga Miller) pulp and peel polyphenols extracts,” Journal of Agricultural and Food Chemistry, vol. 55, no. 3, pp. 963–969, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. F. A. Ayaz, S. Hayirlioglu-Ayaz, S. Alpay-Karaoglu et al., “Phenolic acid contents of kale (Brassica oleraceae L. var. acephala DC.) extracts and their antioxidant and antibacterial activities,” Food Chemistry, vol. 107, no. 1, pp. 19–25, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Bouayed, H. Rammal, A. Dicko, C. Younos, and R. Soulimani, “Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolytic and antioxidant effects,” Journal of the Neurological Sciences, vol. 262, no. 1-2, pp. 77–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. M. Chiang, D. Y. Chuang, S. Y. Wang, Y. H. Kuo, P. W. Tsai, and L. F. Shyur, “Metabolite profiling and chemopreventive bioactivity of plant extracts from Bidens pilosa,” Journal of Ethnopharmacology, vol. 95, no. 2-3, pp. 409–419, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Sato, S. Itagaki, T. Kurokawa et al., “In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid,” International Journal of Pharmaceutics, vol. 403, no. 1-2, pp. 136–138, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. W. S. Sung and D. G. Lee, “Antifungal action of chlorogenic acid against pathogenic fungi, mediated by membrane disruption,” Pure and Applied Chemistry, vol. 82, no. 1, pp. 219–226, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. G. F. Wang, L. P. Shi, Y. D. Ren et al., “Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro,” Antiviral Research, vol. 83, no. 2, pp. 186–190, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. Lou, H. Wang, S. Zhu, C. Ma, and Z. Wang, “Antibacterial activity and mechanism of action of chlorogenic acid,” Journal of Food Science, vol. 76, no. 6, pp. M398–M403, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. J. J. Harrison, R. J. Turner, D. A. Joo et al., “Copper and quaternary ammonium cations exert synergistic bactericidal and antibiofilm activity against Pseudomonas aeruginosa,” Antimicrobial Agents and Chemotherapy, vol. 52, no. 8, pp. 2870–2881, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. J. Miller, H. Zhu, Y. Xu et al., “Utilization of microbial iron assimilation processes for the development of new antibiotics and inspiration for the design of new anticancer agents,” BioMetals, vol. 22, no. 1, pp. 61–75, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Stauder, A. Papetti, D. Mascherpa et al., “Antiadhesion and antibiofilm activities of high molecular weight coffee components against Streptococcus mutans,” Journal of agricultural and food chemistry, vol. 58, no. 22, pp. 11662–11666, 2010. View at Scopus
  17. Clinical and Laboratory Standards Institute, “Performance standards for antimicrobial susceptibility testing,” in Proceedings of the 22nd Informational Supplement M100-S22, vol. 32, No. 3, CLSI, Wayne, Pa, USA, 2012.
  18. A. Giordano, A. Magni, M. Trancassini, P. Varesi, R. Turner, and C. Mancini, “Identification of respiratory isolates of Stenotrophomonas maltophilia by commercial biochemical systems and species-specific PCR,” Journal of Microbiological Methods, vol. 64, no. 1, pp. 135–138, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. P. W. Whitby, K. B. Carter, J. L. Burns, J. A. Royall, J. J. LiPuma, and T. L. Stull, “Identification and detection of Stenotrophomonas maltophilia by rRNA-directed PCR,” Journal of Clinical Microbiology, vol. 38, no. 12, pp. 4305–4309, 2000. View at Scopus
  20. A. W. Bauer, W. M. Kirby, J. C. Sherris, and M. Turck, “Antibiotic susceptibility testing by a standardized single disk method,” American Journal of Clinical Pathology, vol. 45, no. 4, pp. 493–496, 1966. View at Scopus
  21. R. Schwalbe, L. Steele-Moore, and A. C. Goodwin, “Macro- and microdilution methods of antimicrobial susceptibility testing,” in Antimicrobial Susceptibility Testing Protocols, R. Schwalbe, Ed., pp. 76–79, AC: CRC Press Taylor & Francis Group, Florida, Fla, USA, 2007.
  22. B. H. Li, X. F. Ma, X. D. Wu, and W. X. Tian, “Inhibitory activity of chlorogenic acid on enzymes involved in the fatty acid synthesis in animals and bacteria,” IUBMB Life, vol. 58, no. 1, pp. 39–46, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Peeters, H. J. Nelis, and T. Coenye, “Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates,” Journal of Microbiological Methods, vol. 72, no. 2, pp. 157–165, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Chopra, L. Hesse, and A. J. O'Neill, “Exploiting current understanding of antibiotic action for discovery of new drugs,” Symposium Series, vol. 92, supplement 31, pp. 4S–15S, 2002. View at Scopus
  25. N. Horio, M. Horiguchi, K. Murakami, E. Yamamoto, and Y. Miyake, “Stenotrophomonas maltophilia endophthalmitis after intraocular lens implantation,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 238, no. 4, pp. 299–301, 2000. View at Scopus
  26. N. Khardori, L. Elting, E. Wong, B. Schable, and G. P. Bodey, “Nosocomial infections due to Xanthomonas maltophilia (Pseudomonas maltophilia) in patients with cancer,” Reviews of Infectious Diseases, vol. 12, no. 6, pp. 997–1003, 1990. View at Scopus
  27. R. R. Muder, A. P. Harris, S. Muller et al., “Bacteremia due to Stenotrophomonas (Xanthomonas) maltophilia: a prospective, multicenter study of 91 episodes,” Clinical Infectious Diseases, vol. 22, no. 3, pp. 508–512, 1996. View at Scopus
  28. B. A. Cowell, M. D. P. Willcox, and R. P. Schneider, “A relatively small change in sodium chloride concentration has a strong effect on adhesion of ocular bacteria to contact lenses,” Journal of Applied Microbiology, vol. 84, no. 6, pp. 950–958, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. B. A. Jucker, H. Harms, and A. J. B. Zehnder, “Adhesion of the positively charged bacterium Stenotrophomonas (Xanthomonas) maltophilia 70401 to glass and teflon,” Journal of Bacteriology, vol. 178, no. 18, pp. 5472–5479, 1996. View at Scopus
  30. S. A. A. Jassim and M. A. Naji, “Novel antiviral agents: a medicinal plant perspective,” Journal of Applied Microbiology, vol. 95, no. 3, pp. 412–427, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Zhao, H. Wang, B. Yang, and H. Tao, “Identification of cyclodextrin inclusion complex of chlorogenic acid and its antimicrobial activity,” Food Chemistry, vol. 120, no. 4, pp. 1138–1142, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Di Bonaventura, I. Spedicato, D. D'Antonio, I. Robuffo, and R. Piccolomini, “Biofilm formation by Stenotrophomonas maltophilia: modulation by quinolones, trimethoprim-sulfamethoxazole, and ceftazidime,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 1, pp. 151–160, 2004. View at Publisher · View at Google Scholar · View at Scopus