About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 392434, 10 pages
Research Article

17β-Estradiol Attenuates Poststroke Depression and Increases Neurogenesis in Female Ovariectomized Rats

1Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 35000, China
2Department of Neurology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
3Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA

Received 14 July 2013; Revised 11 September 2013; Accepted 18 September 2013

Academic Editor: Monica Fedele

Copyright © 2013 Yifan Cheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Studies have linked neurogenesis to the beneficial actions of specific antidepressants. However, whether 17β-estradiol (E2), an antidepressant, can ameliorate poststroke depression (PSD) and whether E2-mediated improvement of PSD is associated with neurogenesis are largely unexplored. In the present study, we found that depressive-like behaviors were observed at the first week after focal ischemic stroke in female ovariectomized (OVX) rats, as measured by sucrose preference and open field test, suggesting that focal cerebral ischemia could induce PSD. Three weeks after middle cerebral artery occlusion (MCAO), rats were treated with E2 for consecutive 14 days. We found that E2-treated rats had significantly improving ischemia-induced depression-like behaviors in the forced-swimming test and sucrose preference test, compared to vehicle-treated group. In addition, we also found that BrdU- and doublecortin (DCX)-positive cells in the dentate gyrus of the hippocampus and the subventricular zone (SVZ) were significantly increased in ischemic rats after E2 treatment, compared to vehicle-treated group. Our data suggest that focal cerebral ischemia can induce PSD, and E2 can ameliorate PSD. In addition, newborn neurons in the hippocampus may play an important role in E2-mediated antidepressant like effect after ischemic stroke.