About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 392434, 10 pages
http://dx.doi.org/10.1155/2013/392434
Research Article

17β-Estradiol Attenuates Poststroke Depression and Increases Neurogenesis in Female Ovariectomized Rats

1Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 35000, China
2Department of Neurology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
3Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA

Received 14 July 2013; Revised 11 September 2013; Accepted 18 September 2013

Academic Editor: Monica Fedele

Copyright © 2013 Yifan Cheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. L. Hackett, C. Yapa, V. Parag, and C. S. Anderson, “Frequency of depression after stroke: a systematic review of observational studies,” Stroke, vol. 36, no. 6, pp. 1330–1340, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Loubinoux, G. Kronenberg, M. Endres, et al., “Post-stroke depression: mechanisms, translation and therapy,” Journal of Cellular and Molecular Medicine, vol. 16, pp. 1961–1969, 2012.
  3. R. G. Robinson, “Poststroke depression: prevalence, diagnosis, treatment, and disease progression,” Biological Psychiatry, vol. 54, no. 3, pp. 376–387, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Selvamani and F. Sohrabji, “Reproductive age modulates the impact of focal ischemia on the forebrain as well as the effects of estrogen treatment in female rats,” Neurobiology of Aging, vol. 31, no. 9, pp. 1618–1628, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Li, K. K. Blizzard, Z. Zeng, A. C. DeVries, P. D. Hurn, and L. D. McCullough, “Chronic behavioral testing after focal ischemia in the mouse: functional recovery and the effects of gender,” Experimental Neurology, vol. 187, no. 1, pp. 94–104, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. L. M. Garcia-Segura, I. Azcoitia, and L. L. DonCarlos, “Neuroprotection by estradiol,” Progress in Neurobiology, vol. 63, no. 1, pp. 29–60, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Suzuki, C. M. Brown, and P. M. Wise, “Neuroprotective effects of estrogens following ischemic stroke,” Frontiers in Neuroendocrinology, vol. 30, no. 2, pp. 201–211, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. E. L. Moses-Kolko, S. L. Berga, B. Kalro, D. K. Y. Sit, and K. L. Wisner, “Transdermal estradiol for postpartum depression: a promising treatment option,” Clinical Obstetrics and Gynecology, vol. 52, no. 3, pp. 516–529, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. C. De Novaes Soares, O. P. Almeida, H. Joffe, and L. S. Cohen, “Efficacy of estradiol for the treatment of depressive disorders in perimenopausal women: a double-blind, randomized, placebo-controlled trial,” Archives of General Psychiatry, vol. 58, no. 6, pp. 529–534, 2001. View at Scopus
  10. J. M. Barker and L. A. M. Galea, “Repeated estradiol administration alters different aspects of neurogenesis and cell death in the hippocampus of female, but not male, rats,” Neuroscience, vol. 152, no. 4, pp. 888–902, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Westenbroek, J. A. Den Boer, M. Veenhuis, and G. J. Ter Horst, “Chronic stress and social housing differentially affect neurogenesis in male and female rats,” Brain Research Bulletin, vol. 64, no. 4, pp. 303–308, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Li, M. Siegel, M. Yuan et al., “Estrogen enhances neurogenesis and behavioral recovery after stroke,” Journal of Cerebral Blood Flow & Metabolism, vol. 31, no. 2, pp. 413–425, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. R. M. Thomas, G. Hotsenpiller, and D. A. Peterson, “Acute psychosocial stress reduces cell survival in adult hippocampal neurogenesis without altering proliferation,” The Journal of Neuroscience, vol. 27, no. 11, pp. 2734–2743, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Dranovsky and R. Hen, “Hippocampal neurogenesis: regulation by stress and antidepressants,” Biological Psychiatry, vol. 59, no. 12, pp. 1136–1143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Pham, J. Nacher, P. R. Hof, and B. S. McEwen, “Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus,” European Journal of Neuroscience, vol. 17, no. 4, pp. 879–886, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Nixon and F. T. Crews, “Temporally specific burst in cell proliferation increases hippocampal neurogenesis in protracted abstinence from alcohol,” The Journal of Neuroscience, vol. 24, no. 43, pp. 9714–9722, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. Guan and J. Fang, “Peripheral immune activation by lipopolysaccharide decreases neurotrophins in the cortex and hippocampus in rats,” Brain, Behavior, and Immunity, vol. 20, no. 1, pp. 64–71, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Zhang, E. McNeil, L. Dressler, and R. Siman, “Long-lasting impairment in hippocampal neurogenesis associated with amyloid deposition in a knock-in mouse model of familial Alzheimer's disease,” Experimental Neurology, vol. 204, no. 1, pp. 77–87, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Santarelli, M. Saxe, C. Gross et al., “Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants,” Science, vol. 301, no. 5634, pp. 805–809, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. J. M. Brezun and A. Daszuta, “Serotonin may stimulate granule cell proliferation in the adult hippocampus, as observed in rats grafted with foetal raphe neurons,” European Journal of Neuroscience, vol. 12, no. 1, pp. 391–396, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Sairanen, G. Lucas, P. Ernfors, M. Castrén, and E. Castrén, “Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus,” The Journal of Neuroscience, vol. 25, no. 5, pp. 1089–1094, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Benelli, M. Filaferro, A. Bertolini, and S. Genedani, “Influence of S-adenosyl-L-methionine on chronic mild stress-induced anhedonia in castrated rats,” British Journal of Pharmacology, vol. 127, no. 3, pp. 645–654, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. S. H. Wang, Z. J. Zhang, Y. J. Guo, H. Zhou, G. J. Teng, and B. A. Chen, “Anhedonia and activity deficits in rats: impact of post-stroke depression,” Journal of Psychopharmacology, vol. 23, no. 3, pp. 295–304, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. J. Detke, M. Rickels, and I. Lucki, “Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants,” Psychopharmacology, vol. 121, no. 1, pp. 66–72, 1995. View at Scopus
  25. R. A. Swanson, M. T. Morton, G. Tsao-Wu, R. A. Savalos, C. Davidson, and F. R. Sharp, “A semiautomated method for measuring brain infarct volume,” Journal of Cerebral Blood Flow & Metabolism, vol. 10, no. 2, pp. 290–293, 1990. View at Scopus
  26. K. Jin, M. Minami, J. Q. Lan et al., “Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 8, pp. 4710–4715, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. V. Hendrick, L. L. Altshuler, and R. Suri, “Hormonal changes in the postpartum and implications for postpartum depression,” Psychosomatics, vol. 39, no. 2, pp. 93–101, 1998. View at Scopus
  28. L. S. Cohen, C. N. Soares, A. F. Vitonis, M. W. Otto, and B. L. Harlow, “Risk for new onset of depression during the menopausal transition: the harvard study of moods and cycles,” Archives of General Psychiatry, vol. 63, no. 4, pp. 385–390, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. L. S. Cohen, C. N. Soares, J. R. Poitras, J. Prouty, A. B. Alexander, and J. L. Shifren, “Short-term use of estradiol for depression in perimenopausal and postmenopausal women: a preliminary report,” American Journal of Psychiatry, vol. 160, no. 8, pp. 1519–1522, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Estrada-Camarena, A. Fernández-Guasti, and C. López-Rubalcava, “Antidepressant-like effect of different estrogenic compounds in the forced swimming test,” Neuropsychopharmacology, vol. 28, no. 5, pp. 830–838, 2003. View at Scopus
  31. A. A. Walf, J. J. Paris, and C. A. Frye, “Chronic estradiol replacement to aged female rats reduces anxiety-like and depression-like behavior and enhances cognitive performance,” Psychoneuroendocrinology, vol. 34, no. 6, pp. 909–916, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Romano-Torres and A. Fernández-Guasti, “Estradiol valerate elicits antidepressant-like effects in middle-aged female rats under chronic mild stress,” Behavioural Pharmacology, vol. 21, no. 2, pp. 104–111, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Estrada-Camarena, A. Fernández-Guasti, and C. López-Rubalcava, “Interaction between estrogens and antidepressants in the forced swimming test in rats,” Psychopharmacology, vol. 173, no. 1, pp. 139–145, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. E. Estrada-Camarena, N. M. Vega Rivera, C. Berlanga, and A. Fernández-Guasti, “Reduction in the latency of action of antidepressants by 17 β-estradiol in the forced swimming test,” Psychopharmacology, vol. 201, no. 3, pp. 351–360, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Suzuki, L. M. Gerhold, M. Böttner et al., “Estradiol enhances neurogenesis following ischemic stroke through estrogen receptors α and β,” Journal of Comparative Neurology, vol. 500, no. 6, pp. 1064–1075, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. R. E. McClure, C. K. Barha, and L. A. Galea, “17beta-Estradiol, but not estrone, increases the survival and activation of new neurons in the hippocampus in response to spatial memory in adult female rats,” Hormones and Behavior, vol. 63, pp. 144–157, 2013.
  37. W. Jiang, Y. Zhang, L. Xiao et al., “Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects,” The Journal of Clinical Investigation, vol. 115, no. 11, pp. 3104–3116, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. R. D. Airan, L. A. Meltzer, M. Roy, Y. Gong, H. Chen, and K. Deisseroth, “High-speed imaging reveals neurophysiological links to behavior in an animal model of depression,” Science, vol. 317, no. 5839, pp. 819–823, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Weiland, C. Orikasa, S. Hayashi, and B. McEwen, “Distribution and hormone regulation of estrogen receptor immunoreactive cells in the hippocampus of male and female rats,” Journal of Comparative Neurology, vol. 388, pp. 603–612, 1997.
  40. S. P. Herrick, E. M. Waters, C. T. Drake, B. S. McEwen, and T. A. Milner, “Extranuclear estrogen receptor beta immunoreactivity is on doublecortin-containing cells in the adult and neonatal rat dentate gyrus,” Brain Research, vol. 1121, no. 1, pp. 46–58, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Sohrabji, R. C. G. Miranda, and C. D. Toran-Allerand, “Identification of a putative estrogen response element in the gene encoding brain-derived neurotrophic factor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 24, pp. 11110–11114, 1995. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Singh, E. M. Meyer, and J. W. Simpkins, “The effect of ovariectomy and estradiol replacement on brain-derived neurotrophic factor messenger ribonucleic acid expression in cortical and hippocampal brain regions of female Sprague-Dawley rats,” Endocrinology, vol. 136, no. 5, pp. 2320–2324, 1995. View at Scopus
  43. B. K. Ormerod, T. T.-Y. Lee, and L. A. M. Galea, “Estradiol enhances neurogenesis in the dentate gyri of adult male meadow voles by increasing the survival of young granule neurons,” Neuroscience, vol. 128, no. 3, pp. 645–654, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Türeyen, R. Vemuganti, K. A. Sailor, K. K. Bowen, and R. J. Dempsey, “Transient focal cerebral ischemia-induced neurogenesis in the dentate gyrus of the adult mouse,” Journal of Neurosurgery, vol. 101, no. 5, pp. 799–805, 2004. View at Scopus
  45. N. M. Vega-Rivera, A. Fernandez-Guasti, G. Ramirez-Rodriguez, and E. Estrada-Camarena, “Acute stress further decreases the effect of ovariectomy on immobility behavior and hippocampal cell survival in rats,” Psychoneuroendocrinology, vol. 38, pp. 1407–1417, 2013.