About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 392573, 9 pages
http://dx.doi.org/10.1155/2013/392573
Research Article

Enhanced Removal of a Pesticides Mixture by Single Cultures and Consortia of Free and Immobilized Streptomyces Strains

1Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina
2Núcleo de Desarrollo Científico Tecnológico, Universidad de La Frontera, Avenida Francisco Salazar 01145, 4780000 Temuco, Chile
3Departamento de Ingeniería Química, Universidad de La Frontera, Avenida Francisco Salazar 01145, 4780000 Temuco, Chile
4Universidad del Norte Santo Tomás de Aquino, 9 de Julio 165, 4000 Tucumán, Argentina
5Unidad de Administración Territorial, Centro Científico Tecnológico, CONICET-Tucumán, Crisóstomo Álvarez 722, 4000 Tucumán, Argentina
6Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 Tucumán, Argentina

Received 24 April 2013; Revised 7 June 2013; Accepted 13 June 2013

Academic Editor: Kannan Pakshirajan

Copyright © 2013 María S. Fuentes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Kumari, V. K. Madan, and T. S. Kathpal, “Status of insecticide contamination of soil and water in Haryana, India,” Environmental Monitoring and Assessment, vol. 136, no. 1–3, pp. 239–244, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. X. Chu, H. Fang, X. Pan et al., “Degradation of chlorpyrifos alone and in combination with chlorothalonil and their effects on soil microbial populations,” Journal of Environmental Sciences, vol. 20, no. 4, pp. 464–469, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. K. R. Krishna and L. Philip, “Bioremediation of single and mixture of pesticide-contaminated soils by mixed pesticide-enriched cultures,” Applied Biochemistry and Biotechnology, vol. 164, no. 8, pp. 1257–1277, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Stocka, M. Tankiewicz, M. Biziuk, and J. Namieśnik, “Green aspects of techniques for the determination of currently used pesticides in environmental samples,” International Journal of Molecular Sciences, vol. 12, no. 11, pp. 7785–7805, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. J. M. Kuperberg, K. F. A. Soliman, F. K. R. Stino, and M. G. Kolta, “Effects of time of day on chlorpyrifos-induced alterations in body temperature,” Life Sciences, vol. 67, no. 16, pp. 2001–2009, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Briceño, M. S. Fuentes, G. Palma, M. A. Jorquera, M. J. Amoroso, and M. C. Diez, “Chlorpyrifos biodegradation and 3,5,6-trichloro-2-pyridinol production by actinobacteria isolated from soil,” International Biodeterioration & Biodegradation, vol. 73, pp. 1–7, 2012.
  7. K. L. Armbrust, “Chlorothalonil and chlorpyrifos degradation products in golf course leachate,” Pest Management Science, vol. 57, no. 9, pp. 797–802, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Cáceres, W. He, R. Naidu, and M. Megharaj, “Toxicity of chlorpyrifos and TCP alone and in combination to Daphnia carinata: the influence of microbial degradation in natural water,” Water Research, vol. 41, no. 19, pp. 4497–4503, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. C. Diez, “Biological aspects involves in the degradation of organic pollutants,” Journal of Soil Science and Plant Nutrition, vol. 10, pp. 244–267, 2010.
  10. A. Vallecillo, P. A. Garcia-Encina, and M. Peña, “Anaerobic biodegradability and toxicity of chlorophenols,” Water Science and Technology, vol. 40, no. 8, pp. 161–168, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. C. M. Kaoa, C. T. Chaib, J. K. Liub, T. Y. Yehc, K. F. Chena, and S. C. Chend, “Evaluation of natural and enhanced PCP biodegradation at a former pesticide manufacturing plant,” Water Research, vol. 38, pp. 663–672, 2004. View at Publisher · View at Google Scholar
  12. C.-F. Yang, C.-M. Lee, and C.-C. Wang, “Isolation and physiological characterization of the pentachlorophenol degrading bacterium Sphingomonas chlorophenolica,” Chemosphere, vol. 62, no. 5, pp. 709–714, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Remes, A. Pop, F. Manea, A. Baciu, S. J. Picken, and J. Schoonman, “Electrochemical determination of pentachlorophenol in water on a multi-wall carbon nanotubes-epoxy composite electrode,” Sensors, vol. 12, pp. 7033–7046, 2012. View at Publisher · View at Google Scholar
  14. S. D. Copley, “Evolution of a metabolic pathway for degradation of a toxic xenobiotic: the patchwork approach,” Trends in Biochemical Sciences, vol. 25, no. 6, pp. 261–265, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. S. G. Muhamad, “Kinetic studies of catalytic photodegradation of chlorpyrifos insecticide in various natural waters,” Arabian Journal of Chemistry, vol. 3, no. 2, pp. 127–133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. B. Carvalho, S. Tavares, J. Medeiros et al., “Degradation pathway of pentachlorophenol by Mucor plumbeus involves phase II conjugation and oxidation-reduction reactions,” Journal of Hazardous Materials, vol. 198, pp. 133–142, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Gao, S. Chen, M. Hu, Q. Hu, J. Luo, and Y. Li, “Purification and characterization of a novel chlorpyrifos hydrolase from Cladosporium cladosporioides Hu-01,” PLoS One, vol. 7, no. 6, Article ID e38137, 2012. View at Publisher · View at Google Scholar
  18. K. D. Racke, D. A. Laskowski, and M. R. Schultz, “Resistance of chlorpyrifos to enhanced biodegradation in soil,” Journal of Agricultural and Food Chemistry, vol. 38, no. 6, pp. 1430–1436, 1990. View at Scopus
  19. B. K. Singh and A. Walker, “Microbial degradation of organophosphorus compounds,” FEMS Microbiology Reviews, vol. 30, no. 3, pp. 428–471, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Zhu, Y. Zhao, and J. Qiu, “Isolation and application of a chlorpyrifos-degrading Bacillus licheniformis ZHU-1,” African Journal of Microbiology Research, vol. 4, no. 22, pp. 2410–2413, 2010. View at Scopus
  21. G. Kulshrestha and A. Kumari, “Fungal degradation of chlorpyrifos by Acremonium sp. strain (GFRC-1) isolated from a laboratory-enriched red agricultural soil,” Biology and Fertility of Soils, vol. 47, no. 2, pp. 219–225, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. Liu, X. Chen, Y. Shi, and Z. C. Su, “Bacterial degradation of chlorpyrifos by Bacillus cereus,” Advanced Materials Research, vol. 356–360, pp. 676–680, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. R. U. Edgehill, “Pentachlorophenol removal from slightly acidic mineral salts, commercial sand, and clay soil by recovered Arthrobacter strain ATCC 33790,” Applied Microbiology and Biotechnology, vol. 41, no. 1, pp. 142–148, 1994. View at Publisher · View at Google Scholar · View at Scopus
  24. I. S. Thakur, P. Verma, and K. Upadhayaya, “Molecular cloning and characterization of pentachlorophenol-degrading monooxygenase genes of Pseudomonas sp. from the chemostat,” Biochemical and Biophysical Research Communications, vol. 290, no. 2, pp. 770–774, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. R. I. Dams, G. I. Paton, and K. Killham, “Rhizoremediation of pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723,” Chemosphere, vol. 68, no. 5, pp. 864–870, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Singh, R. Chandra, D. K. Patel, and V. Rai, “Isolation and characterization of novel Serratia marcescens (AY927692) for pentachlorophenol degradation from pulp and paper mill waste,” World Journal of Microbiology and Biotechnology, vol. 23, no. 12, pp. 1747–1754, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. S. Fuentes, C. S. Benimeli, S. A. Cuozzo, and M. J. Amoroso, “Isolation of pesticide-degrading actinomycetes from a contaminated site: bacterial growth, removal and dechlorination of organochlorine pesticides,” International Biodeterioration and Biodegradation, vol. 64, no. 6, pp. 434–441, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. S. K. Karn, S. K. Chakrabarti, and M. S. Reddy, “Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and paper mill,” Biodegradation, vol. 22, no. 1, pp. 63–69, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. M. A. Castillo, N. Felis, P. Aragón, G. Cuesta, and C. Sabater, “Biodegradation of the herbicide diuron by streptomycetes isolated from soil,” International Biodeterioration and Biodegradation, vol. 58, no. 3-4, pp. 196–202, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Smith, S. Alvey, and D. E. Crowley, “Cooperative catabolic pathways within an atrazine-degrading enrichment culture isolated from soil,” FEMS Microbiology Ecology, vol. 53, no. 2, pp. 265–273, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. C. S. Benimeli, M. J. Amoroso, A. P. Chaile, and G. R. Castro, “Isolation of four aquatic streptomycetes strains capable of growth on organochlorine pesticides,” Bioresource Technology, vol. 89, no. 2, pp. 133–138, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. M. S. Fuentes, J. M. Sáez, C. S. Benimeli, and M. J. Amoroso, “Lindane biodegradation by defined consortia of indigenous Streptomyces strains,” Water, Air, and Soil Pollution, vol. 222, no. 1–4, pp. 217–231, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. D. A. Hopwood, “Genetic analysis and genome structure in Streptomyces coelicolor,” Bacteriological reviews, vol. 31, no. 4, pp. 373–403, 1967. View at Scopus
  34. D. K. Bell, H. D. Wells, and C. R. Markham, “In vitro antagonism of Trichoderma species against six fungal plant pathogens,” Phytopathology, vol. 72, pp. 379–382, 1980.
  35. M. J. Amoroso, G. R. Castro, F. J. Carlino, N. C. Romero, R. T. Hill, and G. Oliver, “Screening of heavy metal-tolerant actinomycetes isolated from the Sali River,” Journal of General and Applied Microbiology, vol. 44, no. 2, pp. 129–132, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. J. M. Saez, C. S. Benimeli, and M. J. Amoroso, “Lindane removal by pure and mixed cultures of immobilized actinobacteria,” Chemosphere, vol. 89, pp. 982–987, 2012.
  37. P. Pattanapipitpaisal, N. L. Brown, and L. E. Macaskie, “Chromate reduction by Microbacterium liquefaciens immobilised in polyvinyl alcohol,” Biotechnology Letters, vol. 23, no. 1, pp. 61–65, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. O. Rubilar, G. R. Tortella, R. Cuevas, M. Cea, S. Rodríguez-Couto, and M. C. Diez, “Adsorptive removal of pentachlorophenol by anthracophyllum discolor in a fixed-bed column reactor,” Water, Air and Soil Pollution, vol. 223, no. 5, pp. 2463–2472, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. E. E. O. Odjadjare, S. O. Ajisebutu, E. O. Igbinosa, O. A. Aiyegoro, M. R. Trejo-Hernandez, and A. I. Okoh, “Escravos light crude oil degrading potentials of axenic and mixed bacterial cultures,” Journal of General and Applied Microbiology, vol. 54, no. 5, pp. 277–284, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Thouand, P. Bauda, J. Oudot, G. Kirsch, C. Sutton, and J. F. Vidalie, “Laboratory evaluation of crude oil biodegradation with commercial or natural microbial inocula,” Canadian Journal of Microbiology, vol. 45, no. 2, pp. 106–115, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. J. D. van Hamme, A. Singh, and O. P. Ward, “Recent advances in petroleum microbiology,” Microbiology and Molecular Biology Reviews B, vol. 67, no. 4, pp. 503–549, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. O. Zaborina, B. Baskunov, L. Baryshnikova, and L. Golovleva, “Degradation of pentachlorophenol in soil by Streptomyces rochei 303,” Journal of Environmental Science and Health, vol. 32, no. 1, pp. 55–70, 1997. View at Scopus
  43. C. H. Sasikala, S. Jiwal, P. Rout, and M. Ramya, “Biodegradation of chlorpyrifos by bacterial consortium isolated from agriculture soil,” World Journal of Microbiology and Biotechnology, vol. 28, no. 3, pp. 1301–1308, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. M. A. Polti, M. J. Amoroso, and C. M. Abate, “Chromium(VI) resistance and removal by actinomycete strains isolated from sediments,” Chemosphere, vol. 67, no. 4, pp. 660–667, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. M. S. Fuentes, A. Alvarez, J. M. Saez, C. S. Benimeli, and M. J. Amoroso, “Methoxychlor bioremediation by defined consortium of environmental Streptomyces strains,” International Journal of Environmental Science and Technology, 2013. View at Publisher · View at Google Scholar
  46. C. Yang, Y. Li, K. Zhang et al., “Atrazine degradation by a simple consortium of Klebsiella sp. A1 and Comamonas sp. A2 in nitrogen enriched medium,” Biodegradation, vol. 21, no. 1, pp. 97–105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. S. R. Sørensen, Z. Ronen, and J. Aamand, “Growth in coculture stimulates metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2,” Applied and Environmental Microbiology, vol. 68, no. 7, pp. 3478–3485, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. S. R. Sørensen, C. N. Albers, and J. Aamand, “Rapid mineralization of the phenylurea herbicide diuron by Variovorax sp. strain SRS16 in pure culture and within a two-member consortium,” Applied and Environmental Microbiology, vol. 74, no. 8, pp. 2332–2340, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Buono, S. Manzo, G. Maria, and G. Sansone, “Toxic effects of pentachlorophenol, azinphos-methyl and chlorpyrifos on the development of Paracentrotus lividus embryos,” Ecotoxicology, vol. 21, no. 3, pp. 688–697, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. V. Matamoros, J. Puigagut, J. García, and J. M. Bayona, “Behavior of selected priority organic pollutants in horizontal subsurface flow constructed wetlands: a preliminary screening,” Chemosphere, vol. 69, no. 9, pp. 1374–1380, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Prakash, A. Chauhan, and R. K. Jain, “Plasmid-encoded degradation of p-nitrophenol by Pseudomonas cepacia,” Biochemical and Biophysical Research Communications, vol. 224, no. 2, pp. 375–381, 1996. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Yañez-Ocampo, E. Sanchez-Salinas, G. A. Jimenez-Tobon, M. Penninckx, and M. L. Ortiz-Hernández, “Removal of two organophosphate pesticides by a bacterial consortium immobilized in alginate or tezontle,” Journal of Hazardous Materials, vol. 168, no. 2-3, pp. 1554–1561, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. J.-Y. Wu, K.-C. Chen, C.-T. Chen, and S.-C. J. Hwang, “Hydrodynamic characteristics of immobilized cell beads in a liquid-solid fluidized-bed bioreactor,” Biotechnology and Bioengineering, vol. 83, no. 5, pp. 583–594, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. I. Banerjee, J. M. Modak, K. Bandopadhyay, D. Das, and B. R. Maiti, “Mathematical model for evaluation of mass transfer limitations in phenol biodegradation by immobilized Pseudomonas putida,” Journal of Biotechnology, vol. 87, no. 3, pp. 211–223, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. J. H. Niazi and T. B. Karegoudar, “Degradation of dimethylphthalate by cells of Bacillus sp. immobilized in calcium alginate and polyurethane foam,” Journal of Environmental Science and Health A, vol. 36, no. 6, pp. 1135–1144, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Zhou, G. Li, T. An, J. Fu, and G. Sheng, “Recent patents on immobilized microoganism technology and its engineering application in wastewater treatment,” Recent Patents on Engineering, vol. 2, no. 1, pp. 28–35, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Pannier, M. Mkandawire, U. Soltmann, W. Pompe, and H. Böttcher, “Biological activity and mechanical stability of sol-gel-based biofilters using the freeze-gelation technique for immobilization of Rhodococcus ruber,” Applied Microbiology and Biotechnology, vol. 93, no. 4, pp. 1755–1767, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. P. Y. A. Ahamad and A. A. M. Kunhi, “Enhanced degradation of phenol by Pseudomonas sp. CP4 entrapped in agar and calcium alginate beads in batch and continuous processes,” Biodegradation, vol. 22, no. 2, pp. 253–265, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. B.-E. Wang and Y.-Y. Hu, “Comparison of four supports for adsorption of reactive dyes by immobilized Aspergillus fumigatus beads,” Journal of Environmental Sciences, vol. 19, no. 4, pp. 451–457, 2007. View at Publisher · View at Google Scholar · View at Scopus