About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 396272, 10 pages
http://dx.doi.org/10.1155/2013/396272
Research Article

Molecular and Survival Differences between Familial and Sporadic Gastric Cancers

1Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, 201 Section 2, Shih-Pai Road, Taipei 11217, Taiwan
2Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
3Division of Colorectal Surgery, Department of Surgery, Taipei Veterans General Hospital, 201 Section 2, Shih-Pai Road, Taipei 11217, Taiwan
4National Yang-Ming University, Taipei, Taiwan
5National Yang-Ming University Hospital, 152 Xin-Min Road, Yilan 26042, Taiwan
6Department of Pathology, Taipei Veterans General Hospital, 201 Section 2, Shih-Pai Road, Taipei 11217, Taiwan
7Department of Medical Research and Education, Taipei Veterans General Hospital, 201 Section 2, Shih-Pai Road, Taipei 11217, Taiwan
8Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan

Received 11 October 2012; Revised 27 December 2012; Accepted 24 January 2013

Academic Editor: Ozgur Cogulu

Copyright © 2013 Wen-Liang Fang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. Parkin, F. I. Bray, and S. S. Devesa, “Cancer burden in the year 2000. The global picture,” European Journal of Cancer, vol. 37, no. 8, pp. S4–S66, 2001. View at Scopus
  2. L. Ottini, M. Falchetti, R. Lupi et al., “Patterns of genomic instability in gastric cancer: clinical implications and perspectives,” Annals of Oncology, vol. 17, no. 7, pp. vii97–vii102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Oliveira, R. Seruca, M. Seixas, and M. Sobrinho-Simões, “The clinicopathological features of gastric carcinomas with microsatellite instability may be mediated by mutations of different “target genes”: a study of the TGFβ RII, IGFII R, and BAX genes,” American Journal of Pathology, vol. 153, no. 4, pp. 1211–1219, 1998. View at Scopus
  4. M. Gu, D. Kim, Y. Bae, J. Choi, S. Kim, and S. Song, “Analysis of microsatellite instability, protein expression and methylation status of hMLH1 and hMSH2 genes in gastric carcinomas,” Hepato-Gastroenterology, vol. 56, no. 91-92, pp. 899–904, 2009. View at Scopus
  5. C. Pedrazzani, G. Corso, S. Velho et al., “Evidence of tumor microsatellite instability in gastric cancer with familial aggregation,” Familial Cancer, vol. 8, no. 3, pp. 215–220, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Bacani, R. Zwingerman, N. Di Nicola et al., “Tumor microsatellite instability in early onset gastric cancer,” Journal of Molecular Diagnostics, vol. 7, no. 4, pp. 465–477, 2005. View at Scopus
  7. M. Leite, G. Corso, S. Sousa et al., “MSI phenotype and MMR alterations in familial and sporadic gastric cancer,” International Journal of Cancer, vol. 128, no. 7, pp. 1606–1613, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. W. Ye, R. Z. Dong, Y. Zhou et al., “Prognostic analysis of familial gastric cancer in Chinese population,” Journal of Surgical Oncology, vol. 104, no. 1, pp. 76–82, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Oliveira, P. Ferreira, S. Nabais et al., “E-Cadherin (CDH1) and p53 rather than SMAD4 and Caspase-10 germline mutations contribute to genetic predisposition in Portuguese gastric cancer patients,” European Journal of Cancer, vol. 40, no. 12, pp. 1897–1903, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. F. M. Richards, S. A. McKee, M. H. Rajpar et al., “Germline E-cadherin gene (CDH1) mutations predispose to familial gastric cancer and colorectal cancer,” Human Molecular Genetics, vol. 8, no. 4, pp. 607–610, 1999. View at Scopus
  11. I. Kluijt, E. J. Siemerink, M. G. Ausems, et al., “CDH1-related hereditary diffuse gastric cancer syndrome: clinical variations and implications for counseling,” International Journal of Cancer, vol. 131, no. 2, pp. 367–376, 2012.
  12. N. A. Ottenhof, R. F. de Wilde, F. H. Morsink, et al., “Pancreatic ductal adenocarcinoma in hereditary diffuse gastric cancer. A case report,” Human Pathology, vol. 43, no. 3, pp. 457–461, 2012.
  13. P. Guilford, J. Hopkins, J. Harraway et al., “E-cadherin germline mutations in familial gastric cancer,” Nature, vol. 392, no. 6674, pp. 402–405, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Caldas, F. Carneiro, H. T. Lynch et al., “Familial gastric cancer: overview and guidelines for management,” Journal of Medical Genetics, vol. 36, no. 12, pp. 873–880, 1999. View at Scopus
  15. M. Svrcek, “Case n(o) 6—signet ring cell intramucosal carcinoma in hereditary diffuse gastric cancer with mutated CDH1 gene,” Annales De Pathologie, vol. 31, no. 5, pp. 381–384, 2011.
  16. A. R. Brooks-Wilson, P. Kaurah, G. Suriano et al., “Germline E-cadherin mutations in hereditary diffuse gastric cancer: assessment of 42 new families and review of genetic screening criteria,” Journal of Medical Genetics, vol. 41, no. 7, pp. 508–517, 2004. View at Scopus
  17. C. Oliveira, R. Seruca, and F. Carneiro, “Hereditary gastric cancer,” Best Practice and Research, vol. 23, no. 2, pp. 147–157, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. H. Ma, Q. Z. Ren, Y. F. Zhao, et al., “Comparison of clinicopathological features and prognosis in familial and sporadic gastric cancer,” Zhonghua Wei Chang Wai Ke Za Zhi, vol. 14, no. 10, pp. 793–795, 2011.
  19. L. Ottini, D. Palli, M. Falchetti et al., “Microsatellite instability in gastric cancer is associated with tumor location and family history in a high-risk population from Tuscany,” Cancer Research, vol. 57, no. 20, pp. 4523–4529, 1997. View at Scopus
  20. K. Shinmura, W. Yin, J. Isogaki et al., “Stage-dependent evaluation of microsatellite instability in gastric carcinoma with familial clustering,” Cancer Epidemiology Biomarkers and Prevention, vol. 6, no. 9, pp. 693–697, 1997. View at Scopus
  21. G. Keller, M. Rudelius, H. Vogelsang et al., “Microsatellite instability and loss of heterozygosity in gastric carcinoma in comparison to family history,” American Journal of Pathology, vol. 152, no. 5, pp. 1281–1289, 1998. View at Scopus
  22. K. Kanemitsu, K. Kawasaki, M. Nakamura et al., “MSI is frequently recognized among gastric cancer patients with a family history of cancer,” Hepato-Gastroenterology, vol. 54, no. 80, pp. 2410–2414, 2007. View at Scopus
  23. Y. Yanagisawa, Y. Akiyama, S. Iida, et al., “Methylation of the hMLH1 promoter in familial gastric cancer with microsatellite instability,” International Journal of Cancer, vol. 85, no. 1, pp. 50–53, 2000.
  24. J. M. Chong, M. Fukayama, Y. Hayashi et al., “Microsatellite instability in the progression of gastric carcinoma,” Cancer Research, vol. 54, no. 17, pp. 4595–4597, 1994. View at Scopus
  25. “TNM classification of malignant tumours,” in International Union AgaInst Cancer (UICC), L. H. Sobin and C. Wittekind, Eds., Wiley, New York, NY, USA, 7th edition, 2009.
  26. C. R. Boland, S. N. Thibodeau, S. R. Hamilton et al., “A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer,” Cancer Research, vol. 58, no. 22, pp. 5248–5257, 1998. View at Scopus
  27. S. C. Chang, J. K. Lin, S. H. Yang, H. S. Wang, A. F. Y. Li, and C. W. Chi, “Relationship between genetic alterations and prognosis in sporadic colorectal cancer,” International Journal of Cancer, vol. 118, no. 7, pp. 1721–1727, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. J. G. Herman, J. R. Graff, S. Myöhänen, B. D. Nelkin, and S. B. Baylin, “Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 18, pp. 9821–9826, 1996. View at Publisher · View at Google Scholar · View at Scopus
  29. W. M. Grady, A. Rajput, J. D. Lutterbaugh, and S. D. Markowitz, “Detection of aberrantly methylated hMLH1 promoter DNA in the serum of patients with microsatellite unstable colon cancer,” Cancer Research, vol. 61, no. 3, pp. 900–902, 2001. View at Scopus
  30. L. A. Aaltonen, R. Salovaara, P. Kristo et al., “Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease,” The New England Journal of Medicine, vol. 338, no. 21, pp. 1481–1487, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. R. B. Chadwick, R. E. Pyatt, T. H. Niemann et al., “Hereditary and somatic DNA mismatch repair gene mutations in sporadic endometrial carcinoma,” Journal of Medical Genetics, vol. 38, no. 7, pp. 461–466, 2001. View at Scopus
  32. R. G. Cotton and C. R. Scriver, “Proof of “disease causing” mutation,” Human Mutation, vol. 12, no. 1, pp. 1–3, 1998.
  33. W. S. Samowitz, K. Curtin, H. H. Lin et al., “The colon cancer burden of genetically defined hereditary nonpolyposis colon cancer,” Gastroenterology, vol. 121, no. 4, pp. 830–838, 2001. View at Scopus
  34. P. S. Kao, J. K. Lin, H. S. Wang et al., “The impact of family history on the outcome of patients with colorectal cancer in a veterans' hospital,” International Journal of Colorectal Disease, vol. 24, no. 11, pp. 1249–1254, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. W. L. Fang, S. C. Chang, Y. T. Lan, et al., “Microsatellite instability is associated with a better prognosis for gastric cancer patients after curative surgery,” World Journal of Surgery, vol. 36, no. 9, pp. 2131–2138, 2012.
  36. S. Beghelli, G. de Manzoni, S. Barbi et al., “Microsatellite instability in gastric cancer is associated with better prognosis in only stage II cancers,” Surgery, vol. 139, no. 3, pp. 347–356, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Corso, C. Pedrazzani, D. Marrelli, V. Pascale, E. Pinto, and F. Roviello, “Correlation of microsatellite instability at multiple loci with long-term survival in advanced gastric carcinoma,” Archives of Surgery, vol. 144, no. 8, pp. 722–727, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Y. An, H. Kim, J. H. Cheong, et al., “Microsatellite instability in sporadic gastric cancer: its prognostic role and guidance for 5-FU based chemotherapy after R0 resection,” International Journal of Cancer, vol. 131, no. 2, pp. 505–511, 2012.
  39. S. H. Lee, J. W. Lee, Y. H. Soung et al., “BRAF and KRAS mutations in stomach cancer,” Oncogene, vol. 22, no. 44, pp. 6942–6945, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. A. A. Komar, “Genetics. SNPs, silent but not invisible,” Science, vol. 315, no. 5811, pp. 466–467, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Chen, K. Kingham, J. M. Ford, et al., “A prospective study of total gastrectomy for CDH1-positive hereditary diffuse gastric cancer,” Annals of Surgical Oncology, vol. 18, no. 9, pp. 2594–2598, 2011.