About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 402827, 14 pages
http://dx.doi.org/10.1155/2013/402827
Research Article

Characterization of Dendritic Cell and Regulatory T Cell Functions against Mycobacterium tuberculosis Infection

1Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766-1854, USA
2Department of Biological Sciences, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768, USA
3College of Dental Medicine, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766-1854, USA
4College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766-1854, USA

Received 25 March 2013; Revised 28 April 2013; Accepted 8 May 2013

Academic Editor: Francieli Moro Stefanello

Copyright © 2013 Devin Morris et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Glutathione (GSH) is a tripeptide that regulates intracellular redox and other vital aspects of cellular functions. GSH plays a major role in enhancing the immune system. Dendritic cells (DCs) are potent antigen presenting cells that participate in both innate and acquired immune responses against microbial infections. Regulatory T cells (Tregs) play a significant role in immune homeostasis. In this study, we investigated the effects of GSH in enhancing the innate and adaptive immune functions of DCs against Mycobacterium tuberculosis (M. tb) infection. We also characterized the functions of the sub-populations of CD4+T cells such as Tregs and non-Tregs in modulating the ability of monocytes to control the intracellular M. tb infection. Our results indicate that GSH by its direct antimycobacterial activity inhibits the growth of intracellular M. tb inside DCs. GSH also increases the expressions of costimulatory molecules such as HLA-DR, CD80 and CD86 on the cell surface of DCs. Furthermore, GSH-enhanced DCs induced a higher level of T-cell proliferation. We also observed that enhancing the levels of GSH in Tregs resulted in downregulation in the levels of IL-10 and TGF-β and reduction in the fold growth of M. tb inside monocytes. Our studies demonstrate novel regulatory mechanisms that favor both innate and adaptive control of M. tb infection.