About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 402827, 14 pages
http://dx.doi.org/10.1155/2013/402827
Research Article

Characterization of Dendritic Cell and Regulatory T Cell Functions against Mycobacterium tuberculosis Infection

1Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766-1854, USA
2Department of Biological Sciences, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768, USA
3College of Dental Medicine, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766-1854, USA
4College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766-1854, USA

Received 25 March 2013; Revised 28 April 2013; Accepted 8 May 2013

Academic Editor: Francieli Moro Stefanello

Copyright © 2013 Devin Morris et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Center of Disease Control, “Infectious diseases related to travel,” 2012, http://wwwnc.cdc.gov/travel/yellowbook/2012/chapter-3-infectious-diseases-related-to-travel/tuberculosis.htm.
  2. S. T. Cole, R. Brosch, J. Parkhill, et al., “Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence,” Nature, vol. 393, no. 6685, pp. 537–5446, 1998.
  3. S. M. Kamal, A. M. Mahmud, C. R. Ahsan et al., “Use of mycobacterial culture for the diagnosis of smear negative TB cases among,” Bangladesh Journal of Medical Microbiology, vol. 3, no. 2, pp. 23–26, 2009.
  4. A. Demissie, E. M. S. Leyten, M. Abebe et al., “Recognition of stage-specific mycobacterial antigens differentiates between acute and latent infections with Mycobacterium tuberculosis,” Clinical and Vaccine Immunology, vol. 13, no. 2, pp. 179–186, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Morris, C. Guerra, C. Donohue, H. Oh, M. Khurasany, and V. Venketaraman, “Unveiling the mechanisms for decreased glutathione in individuals with HIV infection,” Clinical and Developmental Immunology, vol. 2012, Article ID 734125, 10 pages, 2012. View at Publisher · View at Google Scholar
  6. O. W. Griffith, “Biologic and pharmacologic regulation of mammalian glutathione synthesis,” Free Radical Biology and Medicine, vol. 27, no. 9-10, pp. 922–935, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Gonzalez, C. Guerra, D. Morris, D. Gray, and V. Venketaraman, “Dendritic cells in infectious disease,hypersensitivity, and autoimmunity,” International Journal of Interferon, Cytokine and Mediator Research, vol. 2, no. 1, pp. 137–147, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. R. M. Steinman, D. Hawiger, and M. C. Nussenzweig, “Tolerogenic dendritic cells,” Annual Review of Immunology, vol. 21, pp. 685–711, 2008.
  9. S. Issazadeh-Navikas, R. Teimer, and R. Bockerman, “Influence of dietary components on regulatory T cells,” Molecular Medicine, vol. 18, pp. 95–110, 2012.
  10. J. Diao, E. Winter, C. Cantin et al., “In situ replication of immediate dendritic cell (DC) precursors contributes to conventional DC homeostasis in lymphoid tissue,” Journal of Immunology, vol. 176, no. 12, pp. 7196–7206, 2006. View at Scopus
  11. T. Schwaab, A. Schwarzer, B. Wolf et al., “Clinical and immunologic effects of intranodal autologous tumor lysate-dendritic cell vaccine with aldesleukin (interleukin 2) and IFN-α2a therapy in metastatic renal cell carcinoma patients,” Clinical Cancer Research, vol. 15, no. 15, pp. 4986–4992, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. T. S. Kim and T. J. Braciale, “Respiratory dendritic cell subsets differ in their capacity to support the induction of virus-specific cytotoxic CD8+ T cell responses,” PLos One, vol. 4, no. 1, Article ID e4204, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Lee, M. Sharron, L. J. Montaner, D. Weissman, and R. W. Doms, “Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 9, pp. 5215–5220, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Ardavín, G. M. del Hoyo, P. Martín et al., “Origin and differentiation of dendritic cells,” Trends in Immunology, vol. 22, no. 12, pp. 691–700, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Syme and S. Glück, “Generation of dendritic cells: role of cytokines and potential clinical applications,” Transfusion and Apheresis Science, vol. 24, no. 2, pp. 117–124, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Venketaraman, Y. K. Dayaram, M. T. Talaue, and N. D. Connell, “Glutathione and nitrosoglutathione in macrophage defense against Mycobacterium tuberculosis,” Infection and Immunity, vol. 73, no. 3, pp. 1886–1889, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. K. Dayaram, M. T. Talaue, N. D. Connell, and V. Venketaraman, “Characterization of a glutathione metabolic mutant of Mycobacterium tuberculosis and its resistance to glutathione and nitrosoglutathione,” Journal of Bacteriology, vol. 188, no. 4, pp. 1364–1372, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Venketaraman, T. Rodgers, R. Linares et al., “Glutathione and growth inhibition of Mycobacterium tuberculosis in healthy and HIV infected subjects,” AIDS Research and Therapy, vol. 3, no. 1, article 5, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Guerra, K. Johal, D. Morris et al., “Control of Mycobacterium tuberculosis growth by activated natural killer cells,” Clinical & Experimental Immunology, vol. 168, no. 1, pp. 142–152, 2012.
  20. G. Guerra, D. Morris, D. Gray et al., “Adaptive immune responses against Mycobacterium tuberculosis infection in healthy and HIV infected individuals,” PLos One, vol. 6, no. 12, article e28378, 2011.
  21. S. V. Schmidt, A. C. Nino-Castro, and J. L. Schultze, “Regulatory dendritic cells: there is more than just immune activation,” Frontiers in Immunology, vol. 3, pp. 274–279, 2012.
  22. V. Gupta, A. Jaiswal, D. Behera, and H. K. Prasad, “Disparity in circulating peripheral blood dendritic cell subsets and cytokine profile of pulmonary tuberculosis patients compared with healthy family contacts,” Human Immunology, vol. 71, no. 7, pp. 682–691, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. S. A. Khader and R. Gopal, “IL-17 in protective immunity to intracellular pathogens,” Virulence, vol. 1, no. 5, pp. 423–427, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Alam, S. Ghousunnissa, S. Nair, V. L. Valluriand, and S. Mukhopadhyay, “Glutathione-redox balance regulates c-rel-driven IL-12 production in macrophages: possible implications in antituberculosis immunotherapy,” Journal of Immunology, vol. 184, no. 6, pp. 2918–2929, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. G. J. Clark, N. Angel, M. Kato et al., “The role of dendritic cells in the innate immune system,” Microbes and Infection, vol. 2, no. 3, pp. 257–272, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Nakajima, N. Watanabe, S. Yoshino, H. Yagita, K. Okumura, and M. Azuma, “Requirement of CD28-CD86 co-stimulation in the interaction between antigen-primed T helper type 2 and B cells,” International Immunology, vol. 9, no. 5, pp. 637–644, 1997. View at Publisher · View at Google Scholar · View at Scopus
  27. L. L. Cavanagh and U. H. von Andrian, “Travellers in many guises: the origins and destinations of dendritic cells,” Immunology and Cell Biology, vol. 80, no. 5, pp. 448–462, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. T. L. Geiger, “Turning tregs into class I suppressors,” Blood, vol. 119, no. 15, pp. 3373–3374, 2012.
  29. D. S. Robinson, M. Larche, and S. R. Durha, “Tregs and allergic disease,” Journal of Clinical Investigation, vol. 114, no. 10, pp. 1389–1397, 2004.
  30. J. Shimizu, S. Yamazaki, T. Takahashi, Y. Ishida, and S. Sakaguchi, “Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance,” Nature Immunology, vol. 3, no. 2, pp. 135–142, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Zhu and W. E. Paul, “Peripheral CD4+ T-cell differentiation regulated by networks of cytokines and transcription factors,” Immunological Reviews, vol. 238, no. 1, pp. 247–262, 2010. View at Publisher · View at Google Scholar · View at Scopus