About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 404361, 13 pages
Review Article

Acoustic Droplet Vaporization in Biology and Medicine

1Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
2Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
3Division of Clinical Toxicology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan

Received 24 July 2013; Revised 17 September 2013; Accepted 3 October 2013

Academic Editor: Mei Tian

Copyright © 2013 Chung-Yin Lin and William G. Pitt. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This paper reviews the literature regarding the use of acoustic droplet vaporization (ADV) in clinical applications of imaging, embolic therapy, and therapeutic delivery. ADV is a physical process in which the pressure waves of ultrasound induce a phase transition that causes superheated liquid nanodroplets to form gas bubbles. The bubbles provide ultrasonic imaging contrast and other functions. ADV of perfluoropentane was used extensively in imaging for preclinical trials in the 1990s, but its use declined rapidly with the advent of other imaging agents. In the last decade, ADV was proposed and explored for embolic occlusion therapy, drug delivery, aberration correction, and high intensity focused ultrasound (HIFU) sensitization. Vessel occlusion via ADV has been explored in rodents and dogs and may be approaching clinical use. ADV for drug delivery is still in preclinical stages with initial applications to treat tumors in mice. Other techniques are still in preclinical studies but have potential for clinical use in specialty applications. Overall, ADV has a bright future in clinical application because the small size of nanodroplets greatly reduces the rate of clearance compared to larger contrast agent bubbles and yet provides the advantages of ultrasonographic contrast, acoustic cavitation, and nontoxicity of conventional perfluorocarbon contrast agent bubbles.