About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 404361, 13 pages
http://dx.doi.org/10.1155/2013/404361
Review Article

Acoustic Droplet Vaporization in Biology and Medicine

1Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
2Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
3Division of Clinical Toxicology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan

Received 24 July 2013; Revised 17 September 2013; Accepted 3 October 2013

Academic Editor: Mei Tian

Copyright © 2013 Chung-Yin Lin and William G. Pitt. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. M. Sehgal, P. H. Arger, and C. R. Pugh, “Sonographic enhancement of renal cortex by contrast media,” Journal of Ultrasound in Medicine, vol. 14, no. 10, pp. 741–748, 1995. View at Scopus
  2. F. Forsberg, J.-B. Liu, D. A. Merton, N. M. Rawool, and B. B. Goldberg, “Parenchymal enhancement and tumor visualization using a new sonographic contrast agent,” Journal of Ultrasound in Medicine, vol. 14, no. 12, pp. 949–957, 1995. View at Scopus
  3. T. Albrecht, D. O. Cosgrove, J. M. Correas, L. Rallidis, P. Nihoyanopoulos, and N. Patel, “Renal, hepatic, and cardiac enhancement on Doppler and gray-scale sonograms obtained with EchoGen,” Academic Radiology, vol. 3, pp. S198–S200, 1996. View at Scopus
  4. O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound in Medicine and Biology, vol. 26, no. 7, pp. 1177–1189, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. R. L. Rowley, W. V. Wilding, J. L. Oscarson, and N. F. Giles, “DIPPR Data Compilation of Pure Chemical Properties,” 2012, http://dippr.byu.edu.
  6. G. M. Lanza, K. D. Wallace, M. J. Scott et al., “A novel site-targeted ultrasonic contrast agent with broad biomedical application,” Circulation, vol. 94, no. 12, pp. 3334–3340, 1996. View at Scopus
  7. N. Rapoport, K.-H. Nam, R. Gupta et al., “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” Journal of Controlled Release, vol. 153, no. 1, pp. 4–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. W. G. Pitt, K. X. Perez, R. N. Singh, G. A. Husseini, and D. R. Jack, “Phase transitions of perfluorocarbon nanoemulsions induced with ultrasound: a mathematical model,” Ultrasonics Sonochemistry, 2013.
  9. N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K.-H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” Journal of Controlled Release, vol. 138, no. 3, pp. 268–276, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Blander and J. L. Katz, “Bubble nucleation in liquids,” AIChE Journal, vol. 21, no. 5, pp. 833–848, 1975. View at Scopus
  11. P. C. Hiemenz and R. Rajagopalan, Principles of Colloid and Surface Chemistry, Marcel Dekker, New York, NY, USA, 3rd edition, 1997.
  12. L. Y. Clasohm, I. U. Vakarelski, R. R. Dagastine, D. Y. C. Chan, G. W. Stevens, and F. Grieser, “Anomalous pH dependent stability behavior of surfactant-free nonpolar oil drops in aqueous electrolyte solutions,” Langmuir, vol. 23, no. 18, pp. 9335–9340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. P. S. Sheeran, S. Luois, P. A. Dayton, and T. O. Matsunaga, “Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound,” Langmuir, vol. 27, no. 17, pp. 10412–10420, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, “Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons,” Biomaterials, vol. 33, no. 11, pp. 3262–3269, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. ASME Steam Tables, American Society of Mechanical Engineers, New York, NY, USA, 2006.
  16. J. L. Green, D. J. Durben, G. H. Wolf, and C. A. Angell, “Water and solutions at negative pressure: Roman spectroscopic study to -80 megapascals,” Science, vol. 249, no. 4969, pp. 649–652, 1990. View at Scopus
  17. P. S. Sheeran, T. O. Matsunaga, and P. A. Dayton, “Phase-transition thresholds and vaporization phenomena for ultrasound phase-change nanoemulsions assessed via high-speed optical microscopy,” Physics in Medicine and Biology, vol. 58, no. 13, pp. 4513–4534, 2013.
  18. T. Giesecke and K. Hynynen, “Ultrasound-mediated cavitation thresholds of liquid perfluorocarbon droplets in vitro,” Ultrasound in Medicine and Biology, vol. 29, no. 9, pp. 1359–1365, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. O. D. Kripfgans, M. L. Fabiilli, P. L. Carson, and J. B. Fowlkes, “On the acoustic vaporization of micrometer-sized droplets,” Journal of the Acoustical Society of America, vol. 116, no. 1, pp. 272–281, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Rapoport, Z. Gao, and A. M. Kennedy, “Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy,” Journal of the National Cancer Institute, vol. 99, no. 14, pp. 1095–1106, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. O. D. Kripfgans, C. M. Orifici, P. L. Carson, K. A. Ives, O. P. Eldevik, and J. B. Fowlkes, “Acoustic droplet vaporization for temporal and spatial control of tissue occlusion: a kidney study,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 52, no. 7, pp. 1101–1108, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Zhang, M. L. Fabiilli, K. J. Haworth et al., “Acoustic droplet vaporization for enhancement of thermal ablation by high intensity focused ultrasound,” Academic Radiology, vol. 18, no. 9, pp. 1123–1132, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. O. Shpak, L. Stricker, M. Versluis, and D. Lohse, “The role of gas in ultrasonically driven vapor bubble growth,” Physics in Medicine and Biology, vol. 58, no. 8, pp. 2523–2535, 2013.
  24. N. Reznik, O. Shpak, E. C. Gelderblom, et al., “The efficiency and stability of bubble formation by acoustic vaporization of submicron perfluorocarbon droplets,” Ultrasonics, vol. 53, no. 7, pp. 1368–1376, 2013.
  25. C. H. Wang, S. T. Kang, and C. K. Yeh, “Superparamagnetic iron oxide and drug complex-embedded acoustic droplets for ultrasound targeted theranosis,” Biomaterials, vol. 34, no. 7, pp. 1852–1861, 2013.
  26. K. Shiraishi, R. Endoh, H. Furuhata et al., “A facile preparation method of a PFC-containing nano-sized emulsion for theranostics of solid tumors,” International Journal of Pharmaceutics, vol. 421, no. 2, pp. 379–387, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. S.-T. Kang and C.-K. Yeh, “Intracellular acoustic droplet vaporization in a single peritoneal macrophage for drug delivery applications,” Langmuir, vol. 27, no. 21, pp. 13183–13188, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Kabalnov, J. Weers, R. Arlauskas, and T. Tarara, “Phospholipids as emulsion stabilizers—1. Interfacial tensions,” Langmuir, vol. 11, no. 8, pp. 2966–2974, 1995. View at Scopus
  29. M. Javadi, W. G. Pitt, C. M. Tracy, et al., “Ultrasonic gene and drug delivery using eLiposomes,” Journal of Controlled Release, vol. 167, no. 1, pp. 92–100, 2013.
  30. J. R. Lattin, D. M. Belnap, and W. G. Pitt, “Formation of eLiposomes as a drug delivery vehicle,” Colloids and Surfaces B, vol. 89, no. 1, pp. 93–100, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. J.-M. Correas and S. D. Quay, “EchoGen emulsion: a new ultrasound contrast agent based on phase shift colloids,” Clinical Radiology, vol. 51, no. 1, pp. 11–14, 1996. View at Publisher · View at Google Scholar · View at Scopus
  32. A. H. Lo, O. D. Kripfgans, P. L. Carson, E. D. Rothman, and J. B. Fowlkes, “Acoustic droplet vaporization threshold: effects of pulse duration and contrast agent,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 54, no. 5, pp. 933–945, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. K. C. Schad and K. Hynynen, “In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy,” Physics in Medicine and Biology, vol. 55, no. 17, pp. 4933–4947, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Williams, C. Wright, E. Cherin, et al., “Characterization of submicron phase-change perfluorocarbon droplets for extravascular ultrasound imaging of cancer,” Ultrasound in Medicine and Biology, vol. 39, no. 3, pp. 475–489, 2013.
  35. G. A. Husseini and W. G. Pitt, “The use of ultrasound and micelles in cancer treatment,” Journal of Nanoscience and Nanotechnology, vol. 8, no. 5, pp. 2205–2215, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. C.-Y. Lin, T.-M. Liu, C.-Y. Chen et al., “Quantitative and qualitative investigation into the impact of focused ultrasound with microbubbles on the triggered release of nanoparticles from vasculature in mouse tumors,” Journal of Controlled Release, vol. 146, no. 3, pp. 291–298, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. S. K. Hobbs, W. L. Monsky, F. Yuan et al., “Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 8, pp. 4607–4612, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. S. M. Moghimi and S. S. Davis, “Innovations in avoiding particle clearance from blood by Kupffer cells: cause for reflection,” Critical Reviews in Therapeutic Drug Carrier Systems, vol. 11, no. 1, pp. 31–59, 1994. View at Scopus
  39. M. Ogiwara, “Clearance and maximum removal rate of liposome in normal and impaired liver of rat,” Gastroenterologia Japonica, vol. 19, no. 1, pp. 34–40, 1984. View at Scopus
  40. Y. E. Rahman, E. A. Cerny, and K. R. Patel, “Differential uptake of liposomes varying in size and lipid composition by parenchyma and Kupffer cells of mouse liver,” Life Sciences, vol. 31, no. 19, pp. 2061–2071, 1982. View at Scopus
  41. O. Couture, P. D. Bevan, E. Cherin, K. Cheung, P. N. Burns, and F. S. Foster, “Investigating perfluorohexane particles with high-frequency ultrasound,” Ultrasound in Medicine and Biology, vol. 32, no. 1, pp. 73–82, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Grayburn, “Perflenapent emulsion (EchoGen): a new long-acting phase-shift agent for contrast echocardiography,” Clinical Cardiology, vol. 20, no. 10, supplement, pp. 112–118, 1997. View at Scopus
  43. J. D. Kasprzak and F. J. Ten Cate, “New ultrasound contrast agents for left ventricular and myocardial opacification,” Herz, vol. 23, no. 8, pp. 474–482, 1998. View at Scopus
  44. H. Ragde, G. M. Kenny, G. P. Murphy, and K. Landin, “Transrectal ultrasound microbubble contrast angiography of the prostate,” The Prostate, vol. 32, no. 4, pp. 279–283, 1997.
  45. P. A. Grayburn, J. L. Weiss, T. C. Hack et al., “Phase III multicenter trial comparing the efficacy of 2% dodecafluoropentane emulsion (EchoGen) and sonicated 5% human albumin (Albunex) as ultrasound contrast agents in patients with suboptimal echocardiograms,” Journal of the American College of Cardiology, vol. 32, no. 1, pp. 230–236, 1998. View at Publisher · View at Google Scholar · View at Scopus
  46. W. G. Hundley, A. M. Kizilbash, I. Afridi, F. Franco, R. M. Peshock, and P. A. Grayburn, “Administration of an intravenous perfluorocarbon contrast agent improves echocardiographic determination of left ventricular volumes and ejection fraction: comparison with cine magnetic resonance imaging,” Journal of the American College of Cardiology, vol. 32, no. 5, pp. 1426–1432, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. M. L. Main and P. A. Grayburn, “Clinical applications of transpulmonary contrast echocardiography,” American Heart Journal, vol. 137, no. 1, pp. 144–153, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. J.-M. Correas, A. R. Meuter, E. Singlas, D. R. Kessler, D. Worah, and S. C. Quay, “Human pharmacokinetics of a perfluorocarbon ultrasound contrast agent evaluated with gas chromatography,” Ultrasound in Medicine and Biology, vol. 27, no. 4, pp. 565–570, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. P. A. Grayburn, J. M. Erickson, J. Escobar, L. Womack, and C. E. Velasco, “Peripheral intravenous myocardial contrast echocardiography using a 2% dodecafluoropentane emulsion: identification of myocardial risk area and infarct size in the canine model of ischemia,” Journal of the American College of Cardiology, vol. 26, no. 5, pp. 1340–1347, 1995. View at Publisher · View at Google Scholar · View at Scopus
  50. F. Forsberg, R. Roy, D. A. Merton et al., “Conventional and hypobaric activation of an ultrasound contrast agent,” Ultrasound in Medicine and Biology, vol. 24, no. 8, pp. 1143–1150, 1998. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Totaro, M. Del Sette, and C. Marini, “Echocontrast agents in neurosonology,” Functional Neurology, vol. 14, no. 4, pp. 235–239, 1999. View at Scopus
  52. K. Tiemann, S. Lohmeier, S. Kuntz et al., “Real-time contrast echo assessment of myocardial perfusion at low emission power: first experimental and clinical results using power pulse inversion imaging,” Echocardiography, vol. 16, no. 8, pp. 799–810, 1999. View at Scopus
  53. R. I. White Jr., “Embolotherapy in vascular disease,” American Journal of Roentgenology, vol. 142, no. 1, pp. 27–30, 1984. View at Scopus
  54. M. R. Lyaker, D. B. Tulman, G. T. Dimitrova, R. H. Pin, and T. J. Papadimos, “Arterial embolism,” International Journal of Critical Illness and Injury Science, vol. 3, no. 1, pp. 77–87, 2013.
  55. N. Matsuura, R. Williams, I. Gorelikov, et al., “Nanoparticle-loaded perfluorocarbon droplets for imaging and therapy,” in Proceedings of the IEEE Interantional Ultrasonic Symposium Proceedings, 2009.
  56. M. Zhang, M. L. Fabiilli, K. J. Haworth et al., “Initial investigation of acoustic droplet vaporization for occlusion in canine kidney,” Ultrasound in Medicine and Biology, vol. 36, no. 10, pp. 1691–1703, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. J. R. Lattin, W. G. Pitt, D. M. Belnap, and G. A. Husseini, “Ultrasound-induced calcein release from eLiposomes,” Ultrasound in Medicine and Biology, vol. 38, no. 12, pp. 2163–2173, 2012.
  58. S. Samuel, A. Duprey, M. L. Fabiilli, J. L. Bull, and J. B. Fowlkes, “In vivo microscopy of targeted vessel occlusion employing acoustic droplet vaporization,” Microcirculation, vol. 19, no. 6, pp. 501–509, 2012.
  59. M. Zhang, M. Fabiilli, P. Carson et al., “Acoustic droplet vaporization for the enhancement of ultrasound thermal therapy,” in Proceedings of the IEEE International Ultrasonics Symposium (IUS '10), pp. 221–224, October 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. M. L. Fabiilli, K. J. Haworth, N. H. Fakhri, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “The role of inertial cavitation in acoustic droplet vaporization,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, no. 5, pp. 1006–1017, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. D. Fukumura and R. K. Jain, “Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization,” Microvascular Research, vol. 74, no. 2-3, pp. 72–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. N. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K.-H. Nam, “Ultrasonic nanotherapy of pancreatic cancer: lessons from ultrasound imaging,” Molecular Pharmaceutics, vol. 7, no. 1, pp. 22–31, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. C.-H. Wang, S.-T. Kang, Y.-H. Lee, Y.-L. Luo, Y.-F. Huang, and C.-K. Yeh, “Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis,” Biomaterials, vol. 33, no. 6, pp. 1939–1947, 2012. View at Publisher · View at Google Scholar · View at Scopus
  64. Z. Gao, A. M. Kennedy, D. A. Christensen, and N. Y. Rapoport, “Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy,” Ultrasonics, vol. 48, no. 4, pp. 260–270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. D. L. Miller and C. Dou, “The potential for enhancement of mouse melanoma metastasis by diagnostic and high-amplitude ultrasound,” Ultrasound in Medicine and Biology, vol. 32, no. 7, pp. 1097–1101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. L. Du, Y. Jin, W. Zhou, and J. Zhao, “Ultrasound-triggered drug release and enhanced anticancer effect of doxorubicin-loaded poly(D,L-lactide-co- glycolide)-methoxy-poly(ethylene glycol) nanodroplets,” Ultrasound in Medicine and Biology, vol. 37, no. 8, pp. 1252–1258, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. N. Rapoport, D. A. Christensen, A. M. Kennedy, and K.-H. Nam, “Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers,” Ultrasound in Medicine and Biology, vol. 36, no. 3, pp. 419–429, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. B. E. O'Neill and N. Rapoport, “Phase-shift, stimuli-responsive drug carriers for targeted delivery,” Therapeutic Delivery, vol. 2, no. 9, pp. 1165–1187, 2011.
  69. N. Y. Rapoport, A. L. Efros, D. A. Christensen, A. M. Kennedy, and K.-H. Nam, “Microbubble generation in phase-shift nanoemulsions used as anticancer drug carriers,” Bubble Science Engineering & Technology, vol. 1, no. 1-2, pp. 31–39, 2009.
  70. Y. H. Bae and K. Park, “Targeted drug delivery to tumors: myths, reality and possibility,” Journal of Controlled Release, vol. 153, no. 3, pp. 198–205, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. R. B. Campbell, “Tumor physiology and delivery of nanopharmaceuticals,” Anti-Cancer Agents in Medicinal Chemistry, vol. 6, no. 6, pp. 503–512, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. P. Zhang and T. Porter, “An in vitro study of a phase-shift nanoemulsion: a potential nucleation agent for bubble-enhanced HIFU tumor ablation,” Ultrasound in Medicine and Biology, vol. 36, no. 11, pp. 1856–1866, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. Y. F. Zhou, “High intensity focused ultrasound in clinical tumor ablation,” World Journal of Clinical Oncology, vol. 2, no. 1, pp. 8–27, 2011.
  74. H.-L. Liu, Y.-Y. Chen, W.-S. Chen, T.-C. Shih, J.-S. Chen, and W.-L. Lin, “Interactions between consecutive sonications for characterizing the thermal mechanism in focused ultrasound therapy,” Ultrasound in Medicine and Biology, vol. 32, no. 9, pp. 1411–1421, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. P. Zhang, J. A. Kopechek, and T. M. Porter, “The impact of vaporized nanoemulsions on ultrasound-medicated ablation,” Journal of Therapeutic Ultrasound, vol. 1, no. 2, pp. 1–13, 2013.
  76. K. J. Haworth, J. B. Fowlkes, P. L. Carson, and O. D. Kripfgans, “Towards aberration correction of transcranial ultrasound using acoustic droplet vaporization,” Ultrasound in Medicine and Biology, vol. 34, no. 3, pp. 435–445, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. S.-E. Måsøy, B. Angelsen, and T. Varslot, “Estimation of ultrasound wave aberration with signals from random scatterers,” Journal of the Acoustical Society of America, vol. 115, no. 6, pp. 2998–3009, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. D. Psychoudakis, J. B. Fowlkes, J. L. Volakis, and P. L. Carson, “Potential of microbubbles for use as point targets in phase aberration correction,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 51, no. 12, pp. 1639–1647, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. O. D. Kripfgans, J. B. Fowlkes, M. Woydt, O. P. Eldevik, and P. L. Carson, “In vivo droplet vaporization for occlusion therapy and phase aberration correction,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 49, no. 6, pp. 726–738, 2002. View at Publisher · View at Google Scholar · View at Scopus
  80. C. M. Carneal, O. D. Kripfgans, J. Krücker, P. L. Carson, and J. B. Fowlkes, “A tissue-mimicking ultrasound test object using droplet vaporization to create point targets,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, no. 9, pp. 2013–2025, 2011. View at Scopus
  81. A. S. Manjappa, K. R. Chaudhari, M. P. Venkataraju et al., “Antibody derivatization and conjugation strategies: application in preparation of stealth immunoliposome to target chemotherapeutics to tumor,” Journal of Controlled Release, vol. 150, no. 1, pp. 2–22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. H. Maeda, H. Nakamura, and J. Fang, “The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo,” Advanced Drug Delivery Reviews, vol. 65, pp. 71–79, 2013.
  83. R. Duncan and R. Gaspar, “Nanomedicine(s) under the microscope,” Molecular Pharmaceutics, vol. 8, no. 6, pp. 2101–2141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. W. Chang, M. Edirisinghe, and E. Stride, “Ultrasound mediated release from stimuli-responsive core-shell capsules,” Journal of Materials Chemistry B, vol. 1, no. 32, pp. 3962–3961, 2013.
  85. A. A. Brayman and M. W. Miller, “Acoustic cavitation nuclei survive the apparent ultrasonic destruction of albunex microspheres,” Ultrasound in Medicine and Biology, vol. 23, no. 5, pp. 793–796, 1997. View at Scopus
  86. T. Ye and J. L. Bull, “Direct numerical simulations of micro-bubble expansion in gas embolotherapy,” Journal of Biomechanical Engineering, vol. 126, no. 6, pp. 745–759, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. F. Forsberg, B. B. Goldberg, J.-B. Liu, D. A. Merton, N. M. Rawool, and W. T. Shi, “Tissue-specific US contrast agent for evaluation of hepatic and splenic parenchyma,” Radiology, vol. 210, no. 1, pp. 125–132, 1999. View at Scopus
  88. E. Quaia, “Microbubble ultrasound contrast agents: an update,” European Radiology, vol. 17, no. 8, pp. 1995–2008, 2007. View at Publisher · View at Google Scholar · View at Scopus