About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 405708, 14 pages
http://dx.doi.org/10.1155/2013/405708
Research Article

Diversity and Antimicrobial Properties of Lactic Acid Bacteria Isolated from Rhizosphere of Olive Trees and Desert Truffles of Tunisia

Université de Tunis El Manar, Faculté des Science de Tunis, LR03ES03 Laboratoire Microorganismes et Biomolécules Actives, 2092 Tunis, Tunisia

Received 30 April 2013; Revised 30 July 2013; Accepted 10 August 2013

Academic Editor: George Tsiamis

Copyright © 2013 Imene Fhoula et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. J. Guynes and E. O. Bennett, “Bacterial deterioration of emulsion oils. I. Relationship between aerobes and sulfate-reducing bacteria in deterioration,” Applied Microbiology, vol. 7, no. 2, pp. 117–121, 1959. View at Scopus
  2. J. I. Pitt and A. D. Hocking, Fungi and Food Spoilage, A Chapman and Hall Food Science Book, Aspen, Gaithersburg, Md, USA, 2nd edition, 1999.
  3. J. K. Huang, F. B. Qiao, L. X. Zhang, and S. Rozelle, “Farm pesticide, rice production, and human health,” EEPSEA Working Paper, EEPSEA, Singapore, 2000.
  4. J. Huang, R. Hu, C. Pray, F. Qiao, and S. Rozelle, “Biotechnology as an alternative to chemical pesticides: a case study of Bt cotton in China,” Agricultural Economics, vol. 29, no. 1, pp. 55–67, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. M. E. Stiles, “Biopreservation by lactic acid bacteria,” Antonie van Leeuwenhoek, vol. 70, no. 4, pp. 331–345, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Pastor, E. Carlier, J. Andrés, S. B. Rosas, and M. Rovera, “Characterization of rhizosphere bacteria for control of phytopathogenic fungi of tomato,” Journal of Environmental Management, vol. 95, pp. S332–S337, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. W. N. Konings, J. Kok, O. P. Kuipers, and B. Poolman, “Lactic acid bacteria: the bugs of the new millennium,” Current Opinion in Microbiology, vol. 3, no. 3, pp. 276–282, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. M. F. Fernández, S. Boris, and C. Barbés, “Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract,” Journal of Applied Microbiology, vol. 94, no. 3, pp. 449–455, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Skjermo and O. Vadstein, “Techniques for microbial control in the intensive rearing of marine larvae,” Aquaculture, vol. 177, no. 1–4, pp. 333–343, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Amin, M. Jorfi, A. D. Khosravi, A. R. Samarbafzadeh, and A. F. Sheikh, “Isolation and identification of Lactobacillus casei and Lactobacillus plantarum from plants by PCR and detection of their antibacterial activity,” Journal of Biological Sciences, vol. 9, no. 8, pp. 810–814, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. H. Soomro, T. Masud, and K. Anwaar, “Role of lactic acid bacteria in food preservation and human health—a review,” Pakistan Journal of Nutrition, vol. 1, no. 1, pp. 20–24, 2002.
  12. G. Giraffa, “Microbial polysaccharides produced by lactic acid bacteria in the dairy industry,” Industrie Alimentari, vol. 33, no. 324, pp. 295–298, 1994.
  13. M. Mataragas, E. H. Drosinos, and J. Metaxopoulos, “Antagonistic activity of lactic acid bacteria against listeria monocytogenes in sliced cooked cured pork shoulder stored under vacuum or modified atmosphere at 4 ± 2°C,” Food Microbiology, vol. 20, no. 2, pp. 259–265, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Bizzarro, G. T. Tarelli, G. Giraffa, and E. Neviani, “Phenotypic and genotypic characterization of lactic acid bacteria isolated from Pecorino Toscano cheese,” International Journal of Food Science, vol. 12, no. 3, pp. 303–316, 2000. View at Scopus
  15. R. K. Darsanaki, M. L. Rokhi, M. A. Aliabadi, and K. Issazadeh, “Antimicrobial activities of Lactobacillus strains isolated from fresh vegetables,” Middle-East Journal of Scientific Research, vol. 11, no. 9, pp. 1216–1219, 2012.
  16. M. Jamuna and K. Jeevaratnam, “Isolation and partial characterization of bacteriocins from Pediococcus species,” Applied Microbiology and Biotechnology, vol. 65, no. 4, pp. 433–439, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Trias, L. Bañeras, E. Montesinos, and E. Badosa, “Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi,” International Microbiology, vol. 11, no. 4, pp. 231–236, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Lavermicocca, F. Valerio, A. Evidente, S. Lazzaroni, A. Corsetti, and M. Gobbetti, “Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B,” Applied and Environmental Microbiology, vol. 66, no. 9, pp. 4084–4090, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Laitman, “Le marché et la production de l'huile d'olive en Tunisie,” Annales de Géographie, vol. 62, no. 332, pp. 271–286, 1953.
  20. A. Morte, M. Zamora, A. Gutiérrez, and M. Honrubia, “Desert truffle cultivation in semiarid Mediterranean areas,” in Mycorrhizas Functional Processes and Ecological Impact, C. Azcón-Aguilar, et al., Ed., chapter 15, pp. 221–233, Springer, Berlin, 2009.
  21. A. Slama, Z. Fortas, M. Neffati, L. Khabar, and A. Boudabous, “Etude taxinomique de quelques Ascomycota hypogés (Terfeziaceae) de la Tunisie méridionale,” Bulletin de la Société Mycologique de France, vol. 122, no. 2-3, pp. 187–195, 2006.
  22. H. Ouzari, A. Khsairi, N. Raddadi et al., “Diversity of auxin-producing bacteria associated to Pseudomonas savastanoi-induced olive knots,” Journal of Basic Microbiology, vol. 48, no. 5, pp. 370–377, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. Y.-S. Chen, F. Yanagida, and I. Shinohara, “Isolation and identification of lactic acid bacteria from soil using an enrichment procedure,” Letters in Applied Microbiology, vol. 40, no. 3, pp. 195–200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. J. C. de Man, M. Rogosa, and M. E. Sharpe, “A medium for the cultivation of lactobacilli,” Journal of Applied Microbiology, vol. 23, no. 1, pp. 130–135, 1960.
  25. K. Wilson, “Preparation of genomic DNA from bacteria,” in Current Protocols in Molecular Biology, F. M. Ausubel, R. Brent, R. E. Kingston et al., Eds., pp. 2. 4. 1–2. 4. 5, 1987.
  26. J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA, 2nd edition, 1989.
  27. D. Daffonchio, S. Borin, G. Frova, P. L. Manachini, and C. Sorlini, “PCR fingerprinting of whole genomes: the spacers between the 16s and 23S rRNA genes and of intergenic tRNA gene regions reveal a different intraspecific genomic variability of Bacillus cereus and Bacillus licheniformis,” International Journal of Systematic Bacteriology, vol. 48, no. 1, pp. 107–116, 1998. View at Scopus
  28. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Saitou and M. Nei, “The neighbor-joining method: a new method for reconstructing phylogenetic trees,” Molecular Biology and Evolution, vol. 4, no. 4, pp. 406–425, 1987. View at Scopus
  31. J. R. Tagg and A. R. McGiven, “Assay system for bacteriocins,” Applied Microbiology, vol. 21, no. 5, p. 943, 1971. View at Scopus
  32. J. M. Whipps, “Effect of media on growth and interactions between a range of soil-borne glasshouse pathogens and antagonistic fungi,” New Phytology, vol. 107, no. 1, pp. 127–142, 1987.
  33. P. Ruas-Madiedo and C. G. de los Reyes-Gavilán, “Invited review: methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria,” Journal of Dairy Science, vol. 88, no. 3, pp. 843–856, 2005. View at Scopus
  34. U. Behrendt, T. Müller, and W. Seyfarth, “The influence of extensification in grassland management on the populations of micro-organisms in the phyllosphere of grasses,” Microbiological Research, vol. 152, no. 1, pp. 75–85, 1997. View at Scopus
  35. F. Yanagida, Y. Chen, and T. Shinohara, “Isolation and characterization of lactic acid bacteria from soils in vineyards,” The Journal of General and Applied Microbiology, vol. 51, no. 5, pp. 313–318, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Yanagida, Y. Chen, and M. Yasaki, “Isolation and characterization of lactic acid bacteria from lakes,” Journal of Basic Microbiology, vol. 47, no. 2, pp. 184–190, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. P. D. Kiely, J. M. Haynes, C. H. Higgins et al., “Exploiting new systems-based strategies to elucidate plant-bacterial interactions in the rhizosphere,” Microbial Ecology, vol. 51, no. 3, pp. 257–266, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. V. Gürtler and V. A. Stanisich, “New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region,” Microbiology, vol. 142, no. 1, pp. 3–16, 1996. View at Scopus
  39. D. Daffonchio, A. Cherif, and S. Borin, “Homoduplex and heteroduplex polymorphisms of the amplified ribosomal 16S-23S internal transcribed spacers describe genetic relationships in the ‘Bacillus cereus group’,” Applied and Environmental Microbiology, vol. 66, no. 12, pp. 5460–5468, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. H. L. Leavis, R. J. L. Willems, W. J. B. van Wamel, F. H. Schuren, M. P. M. Caspers, and M. J. M. Bonten, “Insertion sequence-driven diversification creates a globally dispersed emerging multiresistant subspecies of E. faecium,” PLoS Pathogens, vol. 3, no. 10, p. 37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. W. van Schaik, J. Top, D. R. Riley et al., “Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island,” BMC Genomics, vol. 11, no. 1, article R239, 18 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Naïmi, G. Beck, and C. Branlant, “Primary and secondary structures of rRNA spacer regions in enterococci,” Microbiology, vol. 143, no. 3, pp. 823–834, 1997. View at Scopus
  43. Y. Park, E. Oh, B. K. Kim, S. M. Kim, and S. I. Shim, “Phenotypic characteristics of Enterococcus faecium variants confirmed by intergenic ribosomal polymerase chain reaction and E. faecium polymerase chain reaction,” Diagnostic Microbiology and Infectious Disease, vol. 34, no. 4, pp. 269–273, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Brtkova, M. Filipova, H. Drahovska, and H. Bujdakova, “Characterization of enterococci of animal and environmental origin using phenotypic methods and comparison with PCR based methods,” Veterinarni Medicina, vol. 55, no. 3, pp. 97–105, 2010. View at Scopus
  45. G. Giraffa, “Enterococci from foods,” FEMS Microbiology Reviews, vol. 26, no. 2, pp. 163–171, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. J. O. Mundt, “Occurrence of enterococci on plants in a wild environment,” Applied Microbiology, vol. 11, pp. 141–144, 1963. View at Scopus
  47. M. Zamudio-Maya, J. Narváez-Zapata, and R. Rojas-Herrera, “Isolation and identification of lactic acid bacteria from sediments of a coastal marsh using a differential selective medium,” Letters in Applied Microbiology, vol. 46, no. 3, pp. 402–407, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. M. P. Lutz, V. Michel, C. Martinez, and C. Camps, “Lactic acid bacteria as biocontrol agents of soil-borne pathogens,” Biological Control of Fungal and Bacterial Plant Pathogens, vol. 78, pp. 285–288, 2012.
  49. W. P. Hammes, A. Bantleon, and S. Min, “Lactic acid bacteria in meat fermentation,” FEMS Microbiology Reviews, vol. 87, no. 1-2, pp. 165–173, 1990. View at Scopus
  50. O. Kandler, U. Schillinger, and N. Weiss, “Lactobacillus halotolerans sp. nov., nom. rev. and Lactobacillus minor sp. nov., nom. rev,” Systematic and Applied Microbiology, vol. 4, no. 2, pp. 280–285, 1983. View at Scopus
  51. F. Leroy and L. de Vuyst, “Lactic acid bacteria as functional starter cultures for the food fermentation industry,” Trends in Food Science and Technology, vol. 15, no. 2, pp. 67–78, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. N. P. Guerra, A. T. Agrasar, C. L. Macías, P. F. Bernárdez, and L. P. Castro, “Dynamic mathematical models to describe the growth and nisin production by Lactococcus lactis subsp. lactis CECT 539 in both batch and re-alkalized fed-batch cultures,” Journal of Food Engineering, vol. 82, no. 2, pp. 103–113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. L. Chen, G. Wang, S. Hong, A. Liu, C. Li, and Y. Liu, “UV-B-induced oxidative damage and protective role of exopolysaccharides in desert cyanobacterium Microcoleus vaginatus,” Journal of Integrative Plant Biology, vol. 51, no. 2, pp. 194–200, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. A. S. Ferreira, I. N. Silva, V. H. Oliveira, R. Cunha, and L. M. Moreira, “Insights into the role of extracellular polysaccharides in Burkholderia adaptation to different environments,” Frontiers in Cellular and Infection Microbiology, vol. 1, p. 16, 2011.
  55. A. W. Qurashi and A. N. Sabri, “Osmoadaptation and plant growth promotion by salt tolerant bacteria under salt stress,” African Journal of Microbiology Research, vol. 5, no. 21, pp. 3546–3554, 2011. View at Scopus
  56. H. Abriouel, N. B. Omar, A. C. Molinos et al., “Comparative analysis of genetic diversity and incidence of virulence factors and antibiotic resistance among enterococcal populations from raw fruit and vegetable foods, water and soil, and clinical samples,” International Journal of Food Microbiology, vol. 123, no. 1-2, pp. 38–49, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. P. Poeta, D. Costa, J. Rodrigues, and C. Torres, “Antimicrobial resistance and the mechanisms implicated in faecal enterococci from healthy humans, poultry and pets in Portugal,” International Journal of Antimicrobial Agents, vol. 27, no. 2, pp. 131–137, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. A. T. Cruz, A. C. Cazacu, and C. H. Allen, “Pantoea agglomerans, a plant pathogen causing human disease,” Journal of Clinical Microbiology, vol. 45, no. 6, pp. 1989–1992, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. L. Wjohn, N. Masashi, and M. Kathrin, “Stenotrophomonas maltophilia: an emerging opportunist human pathogen,” The Lancet Infectious Diseases, vol. 9, no. 5, pp. 312–323, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. G. Giraffa, D. Carminati, and G. T. Tarelli, “Inhibition of listeria innocua in milk by bacteriocin-producing Enterococcus faecium 7C5,” Journal of Food Protection, vol. 58, no. 6, pp. 621–623, 1995. View at Scopus
  61. R. S. Kumar, P. Kanmani, N. Yuvaraj, K. A. Paari, V. Pattukumar, and V. Arul, “Purification and characterization of enterocin MC13 produced by a potential aquaculture probiont Enterococcus faecium MC13 isolated from the gut of Mugil cephalus,” Canadian Journal of Microbiology, vol. 57, no. 12, pp. 993–1001, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Ahmadova, S. Dimov, I. Ivanova et al., “Proteolytic activities and safety of use of Enterococci strains isolated from traditional Azerbaijani dairy products,” European Food Research and Technology, vol. 233, no. 1, pp. 131–140, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Maisnier-Patin, E. Forni, and J. Richard, “Purification, partial characterisation and mode of action of enterococcin EFS2, an antilisterial bacteriocin, produced by a strain of Enterococcus faecalis isolated from a cheese,” International Journal of Food Microbiology, vol. 30, no. 3, pp. 255–270, 1996. View at Publisher · View at Google Scholar · View at Scopus
  64. L. Nickelsen and M. Jakobsen, “Quantitative risk analysis of aflatoxin toxicity for the consumers of “kenkey”—a fermented maize product,” Food Control, vol. 8, no. 3, pp. 149–159, 1997. View at Scopus
  65. F. Valerio, M. Favilla, P. de Bellis, A. Sisto, S. de Candia, and P. Lavermicocca, “Antifungal activity of strains of lactic acid bacteria isolated from a semolina ecosystem against Penicillium roqueforti, Aspergillus niger and Endomyces fibuliger contaminating bakery products,” Systematic and Applied Microbiology, vol. 32, no. 6, pp. 438–448, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. K. W. Lee, J. Y. Park, H. R. Jeong, H. J. Heo, N. S. Han, and J. H. Kim, “Probiotic properties of Weissella strains isolated from human faeces,” Anaerobe, vol. 18, no. 1, pp. 96–102, 2012. View at Publisher · View at Google Scholar · View at Scopus
  67. G. Berg, A. Fritze, N. Roskot, and K. Smalla, “Evaluation of potential biocontrol rhizobacteria from different host plants of Verticillium dahliae Kleb,” Journal of Applied Microbiology, vol. 91, no. 3, pp. 963–971, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. V. Mandal, S. K. Sen, and N. C. Mandal, “Detection, isolation and partial characterization of antifungal compound(s) produced by Pediococcus acidilactici LAB 5,” Natural Product Communications, vol. 2, pp. 671–674, 2007.
  69. J. Magnusson, K. Ström, S. Roos, J. Sjögren, and J. Schnürer, “Broad and complex antifungal activity among environmental isolates of lactic acid bacteria,” FEMS Microbiology Letters, vol. 219, no. 1, pp. 129–135, 2003. View at Publisher · View at Google Scholar · View at Scopus