About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 405743, 7 pages
http://dx.doi.org/10.1155/2013/405743
Research Article

The Influence of Gene-Gene and Gene-Environment Interactions on the Risk of Asbestosis

1Clinical Institute of Occupational Medicine, University Medical Centre, Ljubljana, Poljanski nasip 58, 1000 Ljubljana, Slovenia
2Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia

Received 16 April 2013; Revised 3 July 2013; Accepted 3 July 2013

Academic Editor: Surinder K. Jindal

Copyright © 2013 A. Franko et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Jakobsson, A. Rannung, A. K. Alexandrie, R. Rylander, M. Albin, and L. Hagmar, “Genetic polymorphism for glutathione-S-transferase mu in asbestos cement workers,” Occupational and Environmental Medicine, vol. 51, no. 12, pp. 812–816, 1994. View at Scopus
  2. C. M. Smith, K. T. Kelsey, J. K. Wiencke, K. Leyden, S. Levin, and D. C. Christiani, “Inherited glutathione-S-transferase deficiency is a risk factor for pulmonary asbestosis,” Cancer Epidemiology Biomarkers and Prevention, vol. 3, no. 6, pp. 471–477, 1994. View at Scopus
  3. A. Hirvonen, S. T. Saarikoski, K. Linnainmaa, et al., “Glutathione S-transferase and N-acetyltransferase genotypes and asbestos-associated pulmonary disorders,” Journal of the National Cancer Institute, vol. 88, no. 24, pp. 1853–1856, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Franko, M. Dodič-Fikfak, N. Arnerić, and V. Dolžan, “Glutathione S-transferases GSTM1 and GSTT1 polymorphisms and asbestosis,” Journal of Occupational and Environmental Medicine, vol. 49, no. 6, pp. 667–671, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Franko, V. Dolžan, N. Arnerić, and M. Dodič-Fikfak, “The influence of genetic polymorphisms of GSTP1 on the development of asbestosis,” Journal of Occupational and Environmental Medicine, vol. 50, no. 1, pp. 7–12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Franko, V. Dolžan, N. Arnerić, and M. Dodič-Fikfak, “Asbestosis and catalase genetic polymorphism,” Arh Hig Rada Toksikol, vol. 59, no. 4, pp. 233–240, 2008.
  7. A. Franko, M. Dodič-Fikfak, N. Arnerić, and V. Dolžan, “Manganese and extracellular superoxide dismutase polymorphisms and risk for asbestosis,” Journal of Biomedicine and Biotechnology, p. 493083, 2009.
  8. A. Franko, M. Dodič-Fikfak, N. Arnerić, and V. Dolžan, “Inducible nitric oxide synthase genetic polymorphism and risk of asbestosis,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 685870, 4 pages, 2011.
  9. D. W. Kamp, P. Graceffa, W. A. Pryor, and S. A. Weitzman, “The role of free radicals in asbestos-induced diseases,” Free Radical Biology and Medicine, vol. 12, no. 4, pp. 293–315, 1992. View at Publisher · View at Google Scholar · View at Scopus
  10. V. L. Kinnula, “Oxidant and antioxidant mechanisms of lung disease caused by asbestos fibres,” European Respiratory Journal, vol. 14, no. 3, pp. 706–716, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Castranova, “Role of nitric oxide in the progression of pneumoconiosis,” Biochemistry, vol. 69, no. 1, pp. 32–37, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Forsberg, L. Lyrenäs, U. de Faire, and R. Morgenstern, “A common functional C-T substitution polymorphism in the promoter region of the human catalase gene influences transcription factor binding, reporter gene transcription and is correlated to blood catalase levels,” Free Radical Biology and Medicine, vol. 30, no. 5, pp. 500–505, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. I. N. Zelko, T. J. Mariani, and R. J. Folz, “Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression,” Free Radical Biology and Medicine, vol. 33, no. 3, pp. 337–349, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. K. T. Kelsey, H. H. Nelson, J. K. Wiencke, C. M. Smith, and S. Levin, “The glutathione S-transferase theta and mu deletion polymorphisms in asbestosis,” American Journal of Industrial Medicine, vol. 31, no. 3, pp. 274–279, 1997.
  15. B. Ketterer, “A bird's eye view of the glutathione transferase field,” Chemico-Biological Interactions, vol. 138, no. 1, pp. 27–42, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. J. D. Hayes, J. U. Flanagan, and I. R. Jowsey, “Glutathione transferases,” Annual Review of Pharmacology and Toxicology, vol. 45, pp. 51–88, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. C. C. Chao, S. H. Park, and A. E. Aust, “Participation of nitric oxide and iron in the oxidation of DNA in asbestos-treated human lung epithelial cells,” Archives of Biochemistry and Biophysics, vol. 326, no. 1, pp. 152–157, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Aldieri, D. Ghigo, M. Tomatis, et al., “Iron inhibits the nitric oxide synthesis elicited by asbestos in murine macrophages,” Free Radical Biology and Medicine, vol. 31, no. 3, pp. 412–417, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Hirvonen, J. Tuimala, T. Ollikainen, K. Linnainmaa, and V. Kinnula, “Manganese superoxide dismutase genotypes and asbestos-associated pulmonary disorders,” Cancer Letters, vol. 178, no. 1, pp. 71–74, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Ali-Osman, O. Akande, G. Antoun, J.-X. Mao, and J. Buolamwini, “Molecular cloning, characterization, and expression in Escherichia coli of full-length cDNAs of three human glutathione S-transferase Pi gene variants: evidence for differential catalytic activity of the encoded proteins,” Journal of Biological Chemistry, vol. 272, no. 15, pp. 10004–10012, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Tatemichi, T. Sawa, I. Gilibert, H. Tazawa, T. Katoh, and H. Ohshima, “Increased risk of intestinal type of gastric adenocarcinoma in Japanese women associated with long forms of CCTTT pentanucleotide repeat in the inducible nitric oxide synthase promoter,” Cancer Letters, vol. 217, no. 2, pp. 197–202, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Sandström, P. Nilsson, K. Karlsson, and S. L. Marklund, “10-Fold increase in human plasma extracellular superoxide dismutase content caused by a mutation in heparin-binding domain,” Journal of Biological Chemistry, vol. 269, no. 29, pp. 19163–19166, 1994. View at Scopus
  23. W. Xu, L. Liu, P. C. Emson, C. R. Harrington, and I. G. Charles, “Evolution of a homopurine-homopyrimidine pentanucleotide repeat sequence upstream of the human inducible nitric oxide synthase gene,” Gene, vol. 204, no. 1-2, pp. 165–170, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. B. G. Ferris, “Epidemiology standardization project (American thoracic society),” American Review of Respiratory Disease, vol. 118, no. 6, pp. 1–120, 1978. View at Scopus
  25. M. Dodič-Fikfak, D. Kriebel, M. M. Quinn, E. A. Eisen, and D. H. Wegman, “A case control study of lung cancer and exposure to chrysotile and amphibole at a slovenian asbestos-cement plant,” Annals of Occupational Hygiene, vol. 51, no. 3, pp. 261–268, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Tossavainen, “Asbestos, asbestosis, and cancer: the Helsinki criteria for diagnosis and attribution,” Scandinavian Journal of Work, Environment and Health, vol. 23, no. 4, pp. 311–316, 1997. View at Scopus
  27. American Thoracic Society, “Diagnosis and initial management of nonmalignant diseases related to asbestos,” American Journal of Respiratory and Critical Care Medicine, vol. 170, no. 6, pp. 691–751, 2004.
  28. Y. Yoshie and H. Ohshima, “Nitric oxide synergistically enhances DNA strand breakage induced by polyhydroxyaromatic compounds, but inhibits that induced by the Fenton reaction,” Archives of Biochemistry and Biophysics, vol. 342, no. 1, pp. 13–21, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Haberstroh, S. Heigold, and G. Bauer, “Transformed cell-derived reactive oxygen species support and inhibit nitric oxide-mediated apoptosis induction,” International Journal of Oncology, vol. 21, no. 1, pp. 145–151, 2002. View at Scopus
  30. E. Hnizdo and G. K. Sluis-Cremer, “Effect of tobacco smoking on the presence of asbestosis at postmortem and on the reading of irregular opacities on roentgenograms in asbestos-exposed workers,” American Review of Respiratory Disease, vol. 138, no. 5, pp. 1207–1212, 1988. View at Scopus
  31. N. H. de Klerk, A. W. Musk, B. K. Armstrong, and M. S. Hobbs, “Smoking, exposure to crocidolite, and the incidence of lung cancer and asbestosis,” British Journal of Industrial Medicine, vol. 48, no. 6, pp. 412–417, 1991. View at Scopus
  32. J. H. Jackson, I. U. Schraufstatter, P. A. Hyslop, et al., “Role of oxidants in DNA damage: hydroxyl radical mediates the synergistic DNA damaging effects of asbestos and cigarette smoke,” Journal of Clinical Investigation, vol. 80, no. 4, pp. 1090–1095, 1987. View at Scopus
  33. A. Valavanidis, T. Vlachogianni, and K. Fiotakis, “Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles,” International Journal of Environmental Research and Public Health, vol. 6, no. 2, pp. 445–462, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. B. T. Mossman, “Mechanisms of asbestos carcinogenesis and toxicity: the amphibole hypothesis revisited,” British Journal of Industrial Medicine, vol. 50, no. 8, pp. 673–676, 1993. View at Scopus
  35. A. Xu, H. Zhou, D. Z. Yu, and T. K. Hei, “Mechanisms of the genotoxicity of crocidolite asbestos in mammalian cells: implication from mutation patterns induced by reactive oxygen species,” Environmental Health Perspectives, vol. 110, no. 10, pp. 1003–1008, 2002. View at Scopus
  36. S. S. Singhal, M. Saxena, H. Ahmad, S. Awasthi, A. K. Haque, and Y. C. Awasthi, “Glutathione S-transferases of human lung: characterization and evaluation of the protective role of the α-class isozymes against lipid peroxidation,” Archives of Biochemistry and Biophysics, vol. 299, no. 2, pp. 232–241, 1992. View at Publisher · View at Google Scholar · View at Scopus
  37. N. E. Hubbard and K. L. Erickson, “Role of 5′-lipoxygenase metabolites in the activation of peritoneal macrophages for tumoricidal function,” Cellular Immunology, vol. 160, no. 1, pp. 115–122, 1995. View at Publisher · View at Google Scholar · View at Scopus
  38. A. van der Vliet and C. E. Cross, “Oxidants, nitrosants, and the lung,” American Journal of Medicine, vol. 109, no. 5, pp. 398–421, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Hasnis, M. Bar-Shai, Z. Burbea, and A. Z. Reznick, “Mechanisms underlying cigarette smoke-induced NF-κB activation in human lymphocytes: the role of reactive nitrogen species,” Journal of Physiology and Pharmacology, vol. 58, no. 5, pp. 275–287, 2007. View at Scopus
  40. B. Vidan-Jeras, B. Jurca, V. Dolžan, M. Jeras, K. Breskvar, and M. Bohinjec, “Caucasian slovenian normal,” in Human Leukocyte Antigen, D. W. Gjertson and P. I. Terasaki, Eds., pp. 180–181, American Society for Histocompatibility and Immunogenetics, Lenexa, Kan, USA, 1998.