About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 407678, 13 pages
http://dx.doi.org/10.1155/2013/407678
Research Article

Androgen Signaling Disruption during Fetal and Postnatal Development Affects Androgen Receptor and Connexin 43 Expression and Distribution in Adult Boar Prostate

Department of Endocrinology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland

Received 29 April 2013; Revised 29 July 2013; Accepted 7 August 2013

Academic Editor: Michael Froehner

Copyright © 2013 Anna Hejmej et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Claessens, S. Denayer, N. van Tilborgh, S. Kerkhofs, C. Helsen, and A. Haelens, “Diverse roles of androgen receptor (AR) domains in AR-mediated signaling,” Nuclear Receptor Signaling, vol. 6, article e008, 2008. View at Scopus
  2. J. Imperato-McGinley, R. S. Sanchez, J. R. Spencer, B. Yee, and E. D. Vaughan, “Comparison of the effects of the 5α-reductase inhibitor finasteride and the antiandrogen flutamide on prostate and genital differentiation: dose—response studies,” Endocrinology, vol. 131, no. 3, pp. 1149–1156, 1992. View at Publisher · View at Google Scholar · View at Scopus
  3. B. S. McIntyre, N. J. Barlow, and P. M. D. Foster, “Androgen-mediated development in male rat offspring exposed to flutamide in utero: permanence and correlation of early postnatal changes in anogenital distance and nipple retention with malformations in androgen-dependent tissues,” Toxicological Sciences, vol. 62, no. 2, pp. 236–249, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Yeh, M.-Y. Tsai, Q. Xu et al., “Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 21, pp. 13498–13503, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. M. D. Anway, C. Leathers, and M. K. Skinner, “Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease,” Endocrinology, vol. 147, no. 12, pp. 5515–5523, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. M. D. Anway and M. K. Skinner, “Transgenerational effects of the endocrine disruptor vinclozolin on the prostate transcriptome and adult onset disease,” Prostate, vol. 68, no. 5, pp. 517–529, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. P. A. Cowin, E. Gold, J. Aleksova et al., “Vinclozolin exposure in utero induces postpubertal prostatitis and reduces sperm production via a reversible hormone-regulated mechanism,” Endocrinology, vol. 151, no. 2, pp. 783–792, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Hejmej, I. Kopera, M. Kotula-Balak, M. Lydka, M. Lenartowicz, and B. Bilinska, “Are expression and localization of tight and adherens junction proteins in testes of adult boar affected by foetal and neonatal exposure to flutamide?” International Journal of Andrology, vol. 35, no. 3, pp. 340–352, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. I. Kopera, M. Durlej, A. Hejmej et al., “Differential expression of connexin 43 in adult pig testes during normal spermatogenic cycle and after flutamide treatment,” Reproduction in Domestic Animals, vol. 46, no. 6, pp. 1050–1060, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Lydka, I. Kopera-Sobota, M. Kotula-Balak, K. Chojnacka, D. Zak, and B. Bilinska, “Morphological and functional alterations in adult boar epididymis: effects of prenatal and postnatal administration of flutamide,” Acta Veterinaria Scandinavica, vol. 53, no. 1, article 12, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Söhl and K. Willecke, “Gap junctions and the connexin protein family,” Cardiovascular Research, vol. 62, no. 2, pp. 228–232, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. N. M. Kumar and N. B. Gilula, “The gap junction communication channel,” Cell, vol. 84, no. 3, pp. 381–388, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Pointis, C. Fiorini, N. Defamie, and D. Segretain, “Gap junctional communication in the male reproductive system,” Biochimica et Biophysica Acta—Biomembranes, vol. 1719, no. 1-2, pp. 102–116, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Habermann, W. Y. Chang, L. Birch, P. Mehta, and G. S. Prins, “Developmental exposure to estrogens alters epithelial cell adhesion and gap junction proteins in the adult rat prostate,” Endocrinology, vol. 142, no. 1, pp. 359–369, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Habermann, V. Ray, W. Habermann, and G. S. Prins, “Alterations in gap junction protein expression in human benign prostatic hyperplasia and prostate cancer,” Journal of Urology, vol. 167, no. 2, pp. 655–660, 2002. View at Scopus
  16. R. Govindarajan, S. Zhao, X.-H. Song et al., “Impaired trafficking of connexins in androgen-independent human prostate cancer cell lines and its mitigation by α-catenin,” Journal of Biological Chemistry, vol. 277, no. 51, pp. 50087–50097, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. P. P. Mehta, C. Perez-Stable, M. Nadji, M. Mian, K. Asotra, and B. A. Roos, “Suppression of human prostate cancer cell growth by forced expression of connexin genes,” Developmental Genetics, vol. 24, no. 1-2, pp. 91–110, 1999. View at Scopus
  18. M. Durlej, I. Kopera, K. Knapczyk-Stwora et al., “Connexin 43 gene expression in male and female gonads of porcine offspring following in utero exposure to an anti-androgen, flutamide,” Acta Histochemica, vol. 113, no. 1, pp. 6–12, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. I. Kopera, M. Durlej, A. Hejmej et al., “Effects of pre- and postnatal exposure to flutamide on connexin 43 expression in testes and ovaries of prepubertal pigs,” European Journal of Histochemistry, vol. 54, no. 2, article e15, 2010. View at Scopus
  20. M. A. Kaminski, C. J. Corbin, and A. J. Conley, “Development and differentiation of the interstitial and tubular compartments of fetal porcine testes,” Biology of Reproduction, vol. 60, no. 1, pp. 119–127, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. S. A. McCoard, T. H. Wise, S. C. Fahrenkrug, and J. J. Ford, “Temporal and spatial localization patterns of Gata4 during porcine gonadogenesis,” Biology of Reproduction, vol. 65, no. 2, pp. 366–374, 2001. View at Scopus
  22. H. Cárdenas and W. F. Pope, “Androgen receptor and follicle-stimulating hormone receptor in the pig ovary during the follicular phase of the estrous cycle,” Molecular Reproduction and Development, vol. 62, no. 1, pp. 92–98, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Cheng, N. Inoue, F. Matsuda-Minehata, Y. Goto, A. Maeda, and N. Manabe, “Changes in expression and localization of connexin 43 mRNA and protein in porcine ovary granulosa cells during follicular atresia,” Journal of Reproduction and Development, vol. 51, no. 5, pp. 627–637, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Scopus
  26. A. J. Smolen, “Image analytic techniques for quantification of immunocytochemical staining in the nervous system,” in Methods in Neurosciences, P. M. Conn, Ed., pp. 208–229, Academic Press, 1990.
  27. Z. Kelman and M. O'Donnell, “Structural and functional similarities of prokaryotic and eukaryotic DNA polymerase sliding clamps,” Nucleic Acids Research, vol. 23, no. 18, pp. 3613–3620, 1995. View at Scopus
  28. M. van de Craen, W. Declercq, I. van den Brande, W. Fiers, and P. Vandenabeele, “The proteolytic procaspase activation network:an in vitro analysis,” Cell Death and Differentiation, vol. 6, no. 11, pp. 1117–1124, 1999. View at Scopus
  29. P. A. Cowin, P. Foster, J. Pedersen, S. Hedwards, S. J. McPherson, and G. P. Risbridger, “Early-onset endocrine disruptor-induced prostatitis in the rat,” Environmental Health Perspectives, vol. 116, no. 7, pp. 923–929, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. W. R. Scarano, F. C. D. Toledo, M. T. Guerra et al., “Long-term effects of developmental exposure to di-n-butyl-phthalate (DBP) on rat prostate: proliferative and inflammatory disorders and a possible role of androgens,” Toxicology, vol. 262, no. 3, pp. 215–223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Bernoulli, E. Yatkin, Y. Konkol, E.-M. Talvitie, R. Santti, and T. Streng, “Prostatic inflammation and obstructive voiding in the adult noble rat: impact of the testosterone to estradiol ratio in serum,” Prostate, vol. 68, no. 12, pp. 1296–1306, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. A. A. Quintar, C. Leimgruber, O. A. Pessah, A. Doll, and C. A. Maldonado, “Androgen depletion augments antibacterial prostate host defences in rats,” International Journal of Andrology, vol. 35, no. 6, pp. 845–859, 2012.
  33. E. Yatkin, J. Bernoulli, E.-M. Talvitie, and R. Santti, “Inflammation and epithelial alterations in rat prostate: impact of the androgen to oestrogen ratio,” International Journal of Andrology, vol. 32, no. 4, pp. 399–410, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Kotula-Balak, A. Hejmej, I. Kopera, M. Lydka, and B. Bilinska, “Prenatal and neonatal exposure to flutamide affects function of Leydig cells in adult boar,” Domestic Animal Endocrinology, vol. 42, no. 3, pp. 142–154, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. W. R. Scarano, D. E. de Sousa, S. G. P. Campos, L. S. Corradi, P. S. L. Vilamaior, and S. R. Taboga, “Oestrogen supplementation following castration promotes stromal remodelling and histopathological alterations in the Mongolian gerbil ventral prostate,” International Journal of Experimental Pathology, vol. 89, no. 1, pp. 25–37, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. G. R. Cunha, W. Ricke, A. Thomson et al., “Hormonal, cellular, and molecular regulation of normal and neoplastic prostatic development,” Journal of Steroid Biochemistry and Molecular Biology, vol. 92, no. 4, pp. 221–236, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. B. J. Feldman and D. Feldman, “The development of androgen-independent prostate cancer,” Nature Reviews Cancer, vol. 1, no. 1, pp. 34–45, 2001. View at Scopus
  38. K. Coffey and C. N. Robson, “Regulation of the androgen receptor by post-translational modifications,” Journal of Endocrinology, vol. 215, no. 2, pp. 221–237, 2012.
  39. P. S. Cooke, P. Young, and G. R. Cunha, “Androgen receptor expression in developing male reproductive organs,” Endocrinology, vol. 128, no. 6, pp. 2867–2873, 1991. View at Scopus
  40. G. R. Cunha and B. Lung, “The possible influence of temporal factors in androgenic responsiveness of urogenital tissue recombinants from wild-type and androgen-insensitive (Tfm) mice,” Journal of Experimental Zoology, vol. 205, no. 2, pp. 181–193, 1978. View at Scopus
  41. S. Yu, C.-R. Yeh, Y. Niu et al., “Altered prostate epithelial development in mice lacking the androgen receptor in stromal fibroblasts,” Prostate, vol. 72, no. 4, pp. 437–449, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Yu, C. Zhang, C.-C. Lin et al., “Altered prostate epithelial development and IGF-1 signal in mice lacking the androgen receptor in stromal smooth muscle cells,” Prostate, vol. 71, no. 5, pp. 517–524, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. J. E. Perry and D. J. Tindall, “Androgens regulate the expression of proliferating cell nuclear antigen posttranscriptionally in the human prostate cancer cell line, LNCaP,” Cancer Research, vol. 56, no. 7, pp. 1539–1544, 1996. View at Scopus
  44. J. Hughes and G. Gobe, “Identification and quantification of apoptosis in the kidney using morphology, biochemical and molecular markers,” Nephrology, vol. 12, no. 5, pp. 452–458, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Omezzine, S. Chater, C. Mauduit et al., “Long-term apoptotic cell death process with increased expression and activation of caspase-3 and -6 in adult rat germ cells exposed in utero to flutamide,” Endocrinology, vol. 144, no. 2, pp. 648–661, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Uzumcu, H. Suzuki, and M. K. Skinner, “Effect of the anti-androgenic endocrine disruptor vinclozolin on embryonic testis cord formation and postnatal testis development and function,” Reproductive Toxicology, vol. 18, no. 6, pp. 765–774, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. N. H. Ing, “Steroid hormones regulate gene expression posttranscriptionally by altering the stabilities of messenger RNAs,” Biology of Reproduction, vol. 72, no. 6, pp. 1290–1296, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. B. B. Yeap, R. G. Krueger, and P. J. Leedman, “Differential posttranscriptional regulation of androgen receptor gene expression by androgen in prostate and breast cancer cells,” Endocrinology, vol. 140, no. 7, pp. 3282–3291, 1999. View at Scopus
  49. V. Gómez, I. Ingelmo, R. Martín et al., “Effect of prolactin on the population of epithelial cells from ventral prostate of intact and cyproterone acetate-treated peripubertal rats: stereological and immunohistochemical study,” Anatomical Record, vol. 292, no. 5, pp. 746–755, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Dey, S. Kusljic, R. J. Lang, and B. Exintaris, “Role of connexin 43 in the maintenance of spontaneous activity in the guinea pig prostate gland,” British Journal of Pharmacology, vol. 161, no. 8, pp. 1692–1707, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Hejmej, M. Kotula-Balak, J. Sadowska, and B. Bilińska, “Expression of connexin 43 protein in testes, epididymides and prostates of stallions,” Equine Veterinary Journal, vol. 39, no. 2, pp. 122–127, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. H. T. Huynh, L. Alpert, D. W. Laird, G. Batist, L. Chalifour, and M. A. Alaoui-Jamali, “Regulation of the gap junction connexin 43 gene by androgens in the prostate,” Journal of Molecular Endocrinology, vol. 26, no. 1, pp. 1–10, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. G. Carruba, M. M. Webber, S. T. A. Quader et al., “Regulation of cell-to-cell communication in non-tumorigenic and malignant human prostate epithelial cells,” Prostate, vol. 50, no. 2, pp. 73–82, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. V. Balasubramaniyan, D. K. Dhar, A. E. Warner et al., “Importance of Connexin-43 based gap junction in cirrhosis and acute-on-chronic liver failure,” Journal of Hepatology, vol. 58, no. 6, pp. 1194–1200, 2013.
  55. C. Pérez, C. Sobarzo, P. Jacobo et al., “Impaired expression and distribution of adherens and gap junction proteins in the seminiferous tubules of rats undergoing autoimmune orchitis,” International Journal of Andrology, vol. 34, no. 6, pp. e566–e577, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. M. A. Retamal, N. Froger, N. Palacios-Prado et al., “Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia,” The Journal of Neuroscience, vol. 27, no. 50, pp. 13781–13792, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Toubas, S. Beck, A.-L. Pageaud et al., “Alteration of connexin expression is an early signal for chronic kidney disease,” American Journal of Physiology—Renal Physiology, vol. 301, no. 1, pp. F24–F32, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. M.-È. Fortin, R.-M. Pelletier, M.-A. Meilleur, and M. L. Vitale, “Modulation of GJA1 turnover and intercellular communication by proinflammatory cytokines in the anterior pituitary folliculostellate cell line TtT/GF,” Biology of Reproduction, vol. 74, no. 1, pp. 2–12, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. H.-S. Chang, M. D. Anway, S. S. Rekow, and M. K. Skinner, “Transgenerational epigenetic imprinting of the male germline by endocrine disruptor exposure during gonadal sex determination,” Endocrinology, vol. 147, no. 12, pp. 5524–5541, 2006.
  60. S.-M. Ho, W.-Y. Tang, J. Belmonte de Frausto, and G. S. Prins, “Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4,” Cancer Research, vol. 66, no. 11, pp. 5624–5632, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Vinken, T. Doktorova, E. Decrock, L. Leybaert, T. Vanhaecke, and V. Rogiers, “Gap junctional intercellular communication as a target for liver toxicity and carcinogenicity,” Critical Reviews in Biochemistry and Molecular Biology, vol. 44, no. 4, pp. 201–222, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Hernandez, Q. Shao, X.-J. Yang et al., “A histone deacetylation-dependent mechanism for transcriptional repression of the gap junction gene cx43 in prostate cancer cells,” Prostate, vol. 66, no. 11, pp. 1151–1161, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Nakayama, M. Watanabe, H. Suzuki et al., “Epigenetic regulation of androgen receptor gene expression in human prostate cancers,” Laboratory Investigation, vol. 80, no. 12, pp. 1789–1796, 2000. View at Scopus
  64. S. Takahashi, S. Inaguma, M. Sakakibara et al., “DNA methylation in the androgen receptor gene promoter region in rat prostate cancers,” Prostate, vol. 52, no. 1, pp. 82–88, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. W.-Y. Hu, G.-B. Shi, D.-P. Hu, J. L. Nelles, and G. S. Prins, “Actions of estrogens and endocrine disrupting chemicals on human prostate stem/progenitor cells and prostate cancer risk,” Molecular and Cellular Endocrinology, vol. 354, no. 1-2, pp. 63–73, 2012. View at Publisher · View at Google Scholar · View at Scopus
  66. K. N. Kuzmuk and L. B. Schook, “Pigs as a model for biomedical sciences,” in The Genetics of the Pig, M. F. Rothschild and A. Ruvinsky, Eds., pp. 426–444, CAB International, 2011.