About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 408253, 10 pages
http://dx.doi.org/10.1155/2013/408253
Research Article

Endothelial Gene Expression and Molecular Changes in Response to Radiosurgery in In Vitro and In Vivo Models of Cerebral Arteriovenous Malformations

1Australian School of Advanced Medicine, Macquarie University, 2 Technology Place, North Ryde, Sydney, NSW 2109, Australia
2Department of Neurosurgery, The 9th Medical Clinical College of Beijing University, Beijing 100850, China
3Department of Electromagnetic and Laser Biology, Beijing Institute of Radiation Medicine, Beijing 100038, China

Received 10 May 2013; Accepted 31 August 2013

Academic Editor: Saulius Butenas

Copyright © 2013 Jian Tu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. S. Heffez, R. J. Osterdock, L. Alderete, and J. Grutsch, “The effect of incomplete patient follow-up on the reported results of AVM radiosurgery,” Surgical Neurology, vol. 49, no. 4, pp. 373–384, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. B. E. Pollock, J. C. Flickinger, L. D. Lunsford, D. J. Bissonette, and D. Kondziolka, “Hemorrhage risk after stereotactic radiosurgery of cerebral arteriovenous malformations,” Neurosurgery, vol. 38, no. 4, pp. 652–661, 1996. View at Scopus
  3. B. Karlsson, C. Lindquist, and L. Steiner, “Prediction of obliteration after gamma knife surgery for cerebral arteriovenous malformations,” Neurosurgery, vol. 40, no. 3, pp. 425–431, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. L. D. Lunsford, D. Kondziolka, J. C. Flickinger et al., “Stereotactic radiosurgery for arteriovenous malformations of the brain,” Journal of Neurosurgery, vol. 75, no. 4, pp. 512–524, 1991. View at Scopus
  5. B. E. Pollock, F. B. Meyer, and W. A. Friedman, “Radiosurgery for arteriovenous malformations,” Journal of Neurosurgery, vol. 101, no. 3, pp. 390–392, 2004. View at Scopus
  6. M. Yamamoto, M. Jimbo, M. Hara, I. Saito, and K. Mori, “Gamma knife radiosurgery for arteriovenous malformations: long-term follow-up results focusing on complications occurring more than 5 years after irradiation,” Neurosurgery, vol. 38, no. 5, pp. 906–914, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Lemaire, G. Lizard, S. Monier et al., “Different patterns of IL-1beta secretion, adhesion molecule expression and apoptosis induction in human endothelial cells treated with 7alpha-, 7beta hydroxycholesterol, or 7-ketocholesterol,” FEBS Letters, vol. 440, no. 3, pp. 434–439, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. T. M. Carlos and J. M. Harlan, “Leukocyte-endothelial adhesion molecules,” Blood, vol. 84, no. 7, pp. 2068–2101, 1994. View at Scopus
  9. H. S. Sakhalkar, M. K. Dalal, A. K. Salem et al., “Leukocyte-inspired biodegradable particles that selectively and avidly adhere to inflamed endothelium in vitro and in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 26, pp. 15895–15900, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Quarmby, P. Kumar, and S. Kumar, “Radiation-induced normal tissue injury: role of adhesion molecules in leukocyte-endothelial cell interactions,” International Journal of Cancer, vol. 82, no. 3, pp. 385–395, 1999.
  11. R. J. Shebuski and K. S. Kilgore, “Role of inflammatory mediators in thrombogenesis,” Journal of Pharmacology and Experimental Therapeutics, vol. 300, no. 3, pp. 729–735, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. A. van de Stolpe and P. T. van der Saag, “Intercellular adhesion molecule-1,” Journal of Molecular Medicine, vol. 74, no. 1, pp. 13–33, 1996. View at Scopus
  13. D. Hallahan, J. Kuchibhotla, and C. Wyble, “Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium,” Cancer Research, vol. 56, no. 22, pp. 5150–5155, 1996. View at Scopus
  14. D. E. Jackson, “The unfolding tale of PECAM-1,” FEBS Letters, vol. 540, no. 1–3, pp. 7–14, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. S. M. Albelda, P. D. Oliver, L. H. Romer, and C. A. Buck, “EndoCAM: a novel endothelial cell-cell adhesion molecule,” Journal of Cell Biology, vol. 110, no. 4, pp. 1227–1237, 1990. View at Scopus
  16. G. E. Rice, J. M. Munro, C. Corless, and M. P. Bevilacqua, “Vascular and nonvascular expression of INCAM-110. A target for mononuclear leukocyte adhesion in normal and inflamed human tissues,” American Journal of Pathology, vol. 138, no. 2, pp. 385–393, 1991. View at Scopus
  17. R. Alon, P. D. Kassner, M. W. Carr, E. B. Finger, M. E. Hemler, and T. A. Springer, “The integrin VLA-4 supports tethering and rolling in flow on VCAM-1,” Journal of Cell Biology, vol. 128, no. 6, pp. 1243–1253, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. B. M. Chan, M. J. Elices, E. Murphy, and M. E. Hemler, “Adhesion to vascular cell adhesion molecule 1 and fibronectin. Comparison of alpha 4 beta 1 (VLA-4) and alpha 4 beta 7 on the human B cell line JY,” Journal of Biological Chemistry, vol. 267, no. 12, pp. 8366–8370, 1992. View at Scopus
  19. N. Jahroudi, A. M. Ardekani, and J. S. Greenberger, “Ionizing irradiation increases transcription of the von Willebrand factor gene in endothelial cells,” Blood, vol. 88, no. 10, pp. 3801–3814, 1996. View at Scopus
  20. M. Verheij, L. G. H. Dewit, and J. A. Van Mourik, “The effect of ionizing radiation on endothelial tissue factor activity and its cellular localization,” Thrombosis and Haemostasis, vol. 73, no. 5, pp. 894–895, 1995. View at Scopus
  21. Z. M. Ruggeri, “Structure and function of von Willebrand factor,” Thrombosis and Haemostasis, vol. 82, no. 2, pp. 576–584, 1999. View at Scopus
  22. J. H. Jandl, Blood: Textbook of Hematology, Little, Brown and Company, Boston, Mass, USA, 1st edition, 1996.
  23. Z. M. Ruggeri, “Von Willebrand factor,” Current Opinion in Hematology, vol. 10, no. 2, pp. 142–149, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. K. G. Mann, “Thrombin formation,” Chest, vol. 124, supplement 3, pp. 4S–10S, 2003. View at Scopus
  25. K. P. Storer, J. Tu, M. A. Stoodley, and R. I. Smee, “Expression of endothelial adhesion molecules after radiosurgery in an animal model of arteriovenous malformation,” Neurosurgery, vol. 67, no. 4, pp. 976–983, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Karunanyaka, J. Tu, A. Watling, K. P. Storer, A. Windsor, and M. A. Stoodley, “Endothelial molecular changes in a rodent model of arteriovenous malformation: laboratory investigation,” Journal of Neurosurgery, vol. 109, no. 6, pp. 1165–1172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Liu, V. Sammons, J. Fairhall, et al., “Molecular responses of brain endothelial cells to radiation,” Journal of Clinical Neuroscience, vol. 19, no. 8, pp. 1154–1158, 2012. View at Publisher · View at Google Scholar
  28. K. P. Storer, A. Karunanayaka, J. Tu, R. Smee, A. Watling, and M. A. Stoodley, “Identification of potential molecular targets for directed thrombosis after radiosurgery in an animal arteriovenous malformation model,” Neurosurgery, vol. 58, no. 2, pp. 403–404, 2006.
  29. K. P. Storer, J. Tu, A. Karunanayaka, M. K. Morgan, and M. A. Stoodley, “Thrombotic molecule expression in cerebral vascular malformations,” Journal of Clinical Neuroscience, vol. 14, no. 10, pp. 975–980, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. K. P. Storer, J. Tu, A. Karunanayaka, M. K. Morgan, and M. A. Stoodley, “Inflammatory molecule expression in cerebral arteriovenous malformations,” Journal of Clinical Neuroscience, vol. 15, no. 2, pp. 179–184, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Tu, M. A. Stoodley, M. K. Morgan, and K. P. Storer, “Responses of arteriovenous malformations to radiosurgery: ultrastructural changes,” Neurosurgery, vol. 58, no. 4, pp. 749–758, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Hu, Y. Xing, Y. Qian X, et al., “Anti-radiation damage effect of polyethylenimine as a toll-like receptor 5 targeted agonist,” Journal of Radiation Research, vol. 54, no. 2, pp. 243–250, 2013.
  33. National Health and Medical Research Council, “Australian Code of Practice for the Care and Use of Animals for Scientific Purposes,” 7th Edition, 2004, http://www.nhmrc.gov.au/_files_nhmrc/publications/attachments/ea16.pdf.
  34. K. P. Storer, J. Tu, A. Karunanayaka et al., “Coadministration of low-dose lipopolysaccharide and soluble tissue factor induces thrombosis after radiosurgery in an animal arteriovenous malformation model,” Neurosurgery, vol. 61, no. 3, pp. 604–611, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. J. L. Hintze, “Analysis of variance,” in Number Cruncher Statistical Systems (NCSS) 97-User's Guide-I, pp. 205–278, UT, Kaysville, Utah, USA, 1997.
  36. M. P. Bevilacqua and R. M. Nelson, “Selectins,” Journal of Clinical Investigation, vol. 91, no. 2, pp. 379–387, 1993. View at Scopus
  37. K. Ley, “The role of selectins in inflammation and disease,” Trends in Molecular Medicine, vol. 9, no. 6, pp. 263–268, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. I. Kim, S. Moon, S. H. Kim, H. J. Kim, Y. S. Koh, and G. Y. Koh, “Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin through nuclear factor-kappa B activation in endothelial cells,” Journal of Biological Chemistry, vol. 276, no. 10, pp. 7614–7620, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. G. T. Szeifert, M. Levivier, J. Lorenzoni, et al., “Morphological observations in brain arteriovenous malformations after gamma knife radiosurgery,” Progress in Neurological Surgery, vol. 27, pp. 119–129, 2013.
  40. S. D. Chang, D. L. Shuster, G. K. Steinberg, R. P. Levy, and K. Frankel, “Stereotactic radiosurgery of arteriovenous malformations: pathologic changes in resected tissue,” Clinical Neuropathology, vol. 16, no. 2, pp. 111–116, 1997. View at Scopus
  41. B. F. Schneider, D. A. Eberhard, and L. E. Steiner, “Histopathology of arteriovenous malformations after gamma knife radiosurgery,” Journal of Neurosurgery, vol. 87, no. 3, pp. 352–357, 1997. View at Scopus
  42. M. Hauer-Jensen, L. M. Fink, and J. Wang, “Radiation injury and the protein C pathway,” Critical Care Medicine, vol. 32, supplement 5, pp. S325–S330, 2004. View at Scopus
  43. M. Verheij, L. G. H. Dewit, M. N. Boomgaard, H.-J. M. Brinkman, and J. A. Van Mourik, “Ionizing radiation enhances platelet adhesion to the extracellular matrix of human endothelial cells by an increase in the release of von Willebrand factor,” Radiation Research, vol. 137, no. 2, pp. 202–207, 1994. View at Scopus
  44. R. Lorenzet, E. Napoleone, A. Celi, G. Pellegrini, and A. Di Santo, “Cell-cell interaction and tissue factor expression,” Blood Coagulation and Fibrinolysis, vol. 9, supplement 1, pp. S49–S59, 1998. View at Scopus