About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 408573, 10 pages
http://dx.doi.org/10.1155/2013/408573
Research Article

Age-Related Changes in Hepatic Activity and Expression of Detoxification Enzymes in Male Rats

Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, CZ-500 05 Hradec Králové, Czech Republic

Received 4 April 2013; Accepted 2 July 2013

Academic Editor: Michael Kalafatis

Copyright © 2013 Erika Vyskočilová et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Testa and S. D. Krämer, The Biochemistry of Drug Metabolism: Conjugations, Consequences of Metabolism, Influencing Factors, Willey-VCH, Zürich, Switzerland, 1st edition, 2010.
  2. M. S. Benedetti, R. Whomsley, and M. Canning, “Drug metabolism in the paediatric population and in the elderly,” Drug Discovery Today, vol. 12, no. 15-16, pp. 599–610, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. U. Klotz, “Pharmacokinetics and drug metabolism in the elderly,” Drug Metabolism Reviews, vol. 41, no. 2, pp. 67–76, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. W. Klinger, “Developmental pharmacology and toxicology: biotransformation of drugs and other xenobiotics during postnatal development,” European Journal of Drug Metabolism and Pharmacokinetics, vol. 30, no. 1-2, pp. 3–17, 2005. View at Scopus
  5. J. S. Warrington, D. J. Greenblatt, and L. L. von Moltke, “Age-related differences in CYP3A expression and activity in the rat liver, intestine, and kidney,” Journal of Pharmacology and Experimental Therapeutics, vol. 309, no. 2, pp. 720–729, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. K. U. Yun, S. J. Oh, J. M. Oh et al., “Age-related changes in hepatic expression and activity of cytochrome P450 in male rats,” Archives of Toxicology, vol. 84, no. 12, pp. 939–946, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Wauthier, R. K. Verbeeck, and P. B. Calderon, “The effect of ageing on cytochrome P450 enzymes: consequences for drug biotransformation in the elderly,” Current Medicinal Chemistry, vol. 14, no. 7, pp. 745–757, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. P. A. Southorn and G. Powis, “Free radicals in medicine. I. Chemical nature and biologic reactions,” Mayo Clinic Proceedings, vol. 63, no. 4, pp. 381–389, 1988. View at Scopus
  9. S. I. Rizvi and P. K. Maurya, “Alterations in antioxidant enzymes during aging in humans,” Molecular Biotechnology, vol. 37, no. 1, pp. 58–61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Dröge, “Free radicals in the physiological control of cell function,” Physiological Reviews, vol. 82, no. 1, pp. 47–95, 2002. View at Scopus
  11. I. Ceballos-Picot, J.-M. Trivier, A. Nicole, P.-M. Sinet, and M. Thevenin, “Age-correlated modifications of copper-zinc superoxide dismutase and glutathione-related enzyme activities in human erythrocytes,” Clinical Chemistry, vol. 38, no. 1, pp. 66–70, 1992. View at Scopus
  12. D. Behne and A. Kyriakopoulos, “Mammalian selenium-containing proteins,” Annual Review of Nutrition, vol. 21, pp. 453–473, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. M. E. Inal, G. Kanbak, and E. Sunal, “Antioxidant enzyme activities and malondialdehyde levels related to aging,” Clinica Chimica Acta, vol. 305, no. 1-2, pp. 75–80, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Barja, “Rate of generation of oxidative stress-related damage and animal longevity,” Free Radical Biology and Medicine, vol. 33, no. 9, pp. 1167–1172, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Gil, W. Siems, B. Mazurek et al., “Age-associated analysis of oxidative stress parameters in human plasma and erythrocytes,” Free Radical Research, vol. 40, no. 5, pp. 495–505, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J. R. Gillette, “Techniques for studying drug metabolism in vitro,” in Fundamentals of Drug Metabolism and Drug Disposition, B. N. La Du, H. G. Mandel, and E. Way, Eds., pp. 400–418, The Williams and Wilkins Company, Baltimore, Md, USA, 1971.
  17. P. K. Smith, R. I. Krohn, G. T. Hermanson, et al., “Measurement of protein using bicinchoninic acid,” Analytical Biochemistry, vol. 150, no. 1, pp. 76–85, 1985. View at Scopus
  18. R. J. Weaver, S. Thompson, G. Smith et al., “A comparative study of constitutive and induced alkoxyresorufin O-dealkylation and individual cytochrome P450 forms in cynomolgus monkey (Macaca fascicularis), human, mouse, rat and hamster liver microsomes,” Biochemical Pharmacology, vol. 47, no. 5, pp. 763–773, 1994. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Omura and R. Sato, “The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature,” The Journal of Biological Chemistry, vol. 239, pp. 2370–2378, 1964. View at Scopus
  20. J. R. Cashman and R. P. Hanzlik, “Microsomal oxidation of thiobenzamide. A photometric assay for the flavin-containing monooxygenase,” Biochemical and Biophysical Research Communications, vol. 98, no. 1, pp. 147–153, 1981. View at Scopus
  21. L. Maté, G. Virkel, A. Lifschitz, M. Ballent, and C. Lanusse, “Hepatic and extra-hepatic metabolic pathways involved in flubendazole biotransformation in sheep,” Biochemical Pharmacology, vol. 76, no. 6, pp. 773–783, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. N. T. Palackal, S. H. Lee, R. G. Harvey, I. A. Blair, and T. M. Penning, “Activation of polycyclic aromatic hydrocarbon trans-dihydrodiol proximate carcinogens by human aldo-keto reductase (AKR1C) enzymes and their functional overexpression in human lung carcinoma (A549) cells,” Journal of Biological Chemistry, vol. 277, no. 27, pp. 24799–24808, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. W. H. Habig, M. J. Pabst, and W. B. Jakoby, “Glutathione S transferases. The first enzymatic step in mercapturic acid formation,” Journal of Biological Chemistry, vol. 249, no. 22, pp. 7130–7139, 1974. View at Scopus
  24. T. Mizuma, M. Machida, M. Hayashi, and S. Awazu, “Correlation of drug conjugative metabolism rates between in vivo and in vitro: glucuronidation and sulfation of p-nitrophenol as a model compound in rat,” Journal of Pharmacobio-Dynamics, vol. 5, no. 10, pp. 811–817, 1982. View at Scopus
  25. L. Goth, “A simple method for determination of serum catalase activity and revision of reference range,” Clinica Chimica Acta, vol. 196, no. 2-3, pp. 143–151, 1991. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Flohé and W. A. Günzler, “Assays of glutathione peroxidase,” Methods in Enzymology, vol. 105, pp. 114–121, 1984.
  27. D. E. Handy, E. Lubos, Y. Yang et al., “Glutathione peroxidase-1 regulates mitochondrial function to modulate redox-dependent cellular responses,” Journal of Biological Chemistry, vol. 284, no. 18, pp. 11913–11921, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. F. J. Pérez, D. Villegas, and N. Mejia, “Ascorbic acid and flavonoid-peroxidase reaction as a detoxifying system of H2O2 in grapevine leaves,” Phytochemistry, vol. 60, no. 6, pp. 573–580, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Towbin, T. Staehelin, and J. Gordon, “Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 9, pp. 4350–4354, 1979. View at Scopus
  31. S. K. Farahmand, F. Samini, M. Samini, and S. Samarghandian, “Safranal ameliorates antioxidant enzymes and suppresses lipid peroxidation and nitric oxide formation in aged male rat liver,” Biogerontology, vol. 14, no. 1, pp. 63–71, 2013. View at Publisher · View at Google Scholar
  32. A. Parkinson, “Biotransformation of Xenobiotics,” in Casarett and Doull’s Toxicology: The Basic Science of Poisons, C. D. Klaassen, Ed., pp. 133–224, McGraw-Hill, New York, NY, USA, 2001.
  33. C. P. Chengelis, “Age- and sex-related changes in the components of the hepatic microsomal mixed function oxidase system in Sprague-Dawley rats,” Xenobiotica, vol. 18, no. 11, pp. 1211–1224, 1988. View at Scopus
  34. V. Wauthier, R. K. Verbeeck, and P. B. Calderon, “Age-related changes in the protein and mRNA levels of CYP2E1 and CYP3A isoforms as well as in their hepatic activities in Wistar rats. What role for oxidative stress?” Archives of Toxicology, vol. 78, no. 3, pp. 131–138, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. D. L. Schmucker, “Liver function and phase I drug metabolism in the elderly: a paradox,” Drugs and Aging, vol. 18, no. 11, pp. 837–851, 2001. View at Scopus
  36. J. A. Handler and W. R. Brian, “Effect of aging on mixed-function oxidation and conjugation by isolated perfused rat livers,” Biochemical Pharmacology, vol. 54, no. 1, pp. 159–164, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. M. D. Burke, S. Thompson, R. J. Weaver, C. R. Wolf, and R. T. Mayer, “Cytochrome P450 specificities of alkoxyresorufin O-dealkylation in human and rat liver,” Biochemical Pharmacology, vol. 48, no. 5, pp. 923–936, 1994. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Kobayashi, K. Urashima, N. Shimada, and K. Chiba, “Substrate specificity for rat cytochrome P450 (CYP) isoforms: screening with cDNA-expressed systems of the rat,” Biochemical Pharmacology, vol. 63, no. 5, pp. 889–896, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. R. N. Hines, J. R. Cashman, R. M. Philpot, D. E. Williams, and D. M. Ziegler, “The mammalian flavin-containing monooxygenases: molecular characterization and regulation of expression,” Toxicology and Applied Pharmacology, vol. 125, no. 1, pp. 1–6, 1994. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Janmohamed, D. Hernandez, I. R. Phillips, and E. A. Shephard, “Cell-, tissue-, sex- and developmental stage-specific expression of mouse flavin-containing monooxygenases (Fmos),” Biochemical Pharmacology, vol. 68, no. 1, pp. 73–83, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Zhang and J. R. Cashman, “Quantitative analysis of FMO gene mRNA levels in human tissues,” Drug Metabolism and Disposition, vol. 34, no. 1, pp. 19–26, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Okamoto, T. Kita, H. Okuda, T. Tanaka, and T. Nakashima, “Effects of aging on acute toxicity of nicotine in rats,” Pharmacology and Toxicology, vol. 75, no. 1, pp. 1–6, 1994. View at Scopus
  43. N. Inazu and T. Fujii, “Effects of age and calcium ion on testis carbonyl reductase in rats,” Japanese Journal of Pharmacology, vol. 63, no. 1, pp. 65–71, 1993. View at Scopus
  44. J. B. Tarloff, R. S. Goldstein, R. S. Sozio, and J. B. Hook, “Hepatic and renal conjugation (phase II) enzyme activities in young adult, middle-aged, and senescent male Sprague-Dawley rats,” Proceedings of the Society for Experimental Biology and Medicine, vol. 197, no. 3, pp. 297–303, 1991. View at Scopus
  45. I. Boušová and L. Skálová, “Inhibition and induction of glutathione S-transferases by flavonoids: possible pharmacological and toxicological consequences,” Drug Metabolism Reviews, vol. 44, no. 4, pp. 267–286, 2012.
  46. M. M. Helmy, “Potential hepato-protective effect of a-tocopherol or simvastatin in aged rats,” Pharmacological Reports, vol. 64, no. 3, pp. 698–705, 2012.
  47. C. P. Chengelis, “Age- and sex-related changes in epoxide hydrolase, UDP-glucuronosyl transferase, glutathione S-transferase, and PAPS sulphotransferase in Sprague-Dawley rats,” Xenobiotica, vol. 18, no. 11, pp. 1225–1237, 1988. View at Scopus
  48. A. F. Aydin, C. Küçükgergin, G. Özdemirler-Erata, N. Koçak-Toker, and M. Uysal, “The effect of carnosine treatment on prooxidant-antioxidant balance in liver, heart and brain tissues of male aged rats,” Biogerontology, vol. 11, no. 1, pp. 103–109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. M.-C. Carrillo, M. Nokubo, K. Kitani, K. Satoh, and K. Sato, “Age-related alterations of enzyme activities and subunits of hepatic glutathione S-transferases in male and female Fischer-344 rats,” Biochimica et Biophysica Acta, vol. 1077, no. 3, pp. 325–331, 1991. View at Publisher · View at Google Scholar · View at Scopus
  50. H.-G. Kim, S.-M. Hong, S.-J. Kim et al., “Age-related changes in the activity of antioxidant and redox enzymes in rats,” Molecules and Cells, vol. 16, no. 3, pp. 278–284, 2003. View at Scopus
  51. O. Oztürk and S. Gümüşlü, “Changes in glucose-6-phosphate dehydrogenase, copper, zinc-superoxide dismutase and catalase activities, glutathione and its metabolizing enzymes, and lipid peroxidation in rat erythrocytes with age,” Experimental Gerontology, vol. 39, no. 2, pp. 211–216, 2004.
  52. P. K. Maurya and S. I. Rizvi, “Age-dependent changes in glutathione-S-transferase: correlation with total plasma antioxidant potential and red cell intracellular glutathione,” Indian Journal of Clinical Biochemistry, vol. 25, no. 4, pp. 398–400, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. N. Kassner, K. Huse, H.-J. Martin et al., “Carbonyl reductase 1 is a predominant doxorubicin reductase in the human liver,” Drug Metabolism and Disposition, vol. 36, no. 10, pp. 2113–2120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. J. E. Klaunig, L. M. Kamendulis, and B. A. Hocevar, “Oxidative stress and oxidative damage in carcinogenesis,” Toxicologic Pathology, vol. 38, no. 1, pp. 96–109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. L. L. Ji, D. Dillon, and E. Wu, “Alteration of antioxidant enzymes with aging in rat skeletal muscle and liver,” The American Journal of Physiology, vol. 258, no. 4, pp. R918–R923, 1990. View at Scopus
  56. F. Mármol, J. Sánchez, D. López et al., “Role of oxidative stress and adenosine nucleotides in the liver of aging rats,” Physiological Research, vol. 59, no. 4, pp. 553–560, 2010. View at Scopus