About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 408680, 7 pages
http://dx.doi.org/10.1155/2013/408680
Clinical Study

Postoperative Adiponectin Levels in Pediatric Patients Undergoing Open Heart Surgery

1Pediatric Intensive Care Department, Chaim Sheba Medical Center, Safra Children’s Hospital, 52621 Tel-Hashomer, Israel
2Sackler School of Medicine, Tel-Aviv University, 39040 Tel-Aviv, Israel
3Institute of Endocrinology, Chaim Sheba Medical Center, Safra Children’s Hospital, 52621 Tel-Hashomer, Israel
4Department of Cardiothoracic Surgery, Chaim Sheba Medical Center, Safra Children’s Hospital, 52621 Tel-Hashomer, Israel
5Pediatric Endocrinology and Diabetes Unit, Chaim Sheba Medical Center, The Edmond and Lily Safra Children’s Hospital, 52621 Tel-Hashomer, Israel

Received 15 April 2013; Revised 5 September 2013; Accepted 6 September 2013

Academic Editor: Rei Shibata

Copyright © 2013 A. Thaler et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Butler, G. M. Rocker, and S. Westaby, “Inflammatory response to cardiopulmonary bypass,” Annals of Thoracic Surgery, vol. 55, no. 2, pp. 552–559, 1993. View at Scopus
  2. M. Chandran, S. A. Phillips, T. Ciaraldi, and R. R. Henry, “Adiponectin: more than just another fat cell hormone?” Diabetes Care, vol. 26, no. 8, pp. 2442–2450, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Bozzola, C. Meazza, M. Arvigo et al., “Role of adiponectin and leptin on body development in infants during the first year of life,” Italian Journal of Pediatrics, vol. 36, p. 26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Kadowaki and T. Yamauchi, “Adiponectin and adiponectin receptors,” Endocrine Reviews, vol. 26, no. 3, pp. 439–451, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. K.-Y. Kim, J. K. Kim, S. H. Han et al., “Adiponectin is a negative regulator of NK cell cytotoxicity,” Journal of Immunology, vol. 176, no. 10, pp. 5958–5964, 2006. View at Scopus
  6. U. B. Pajvani, X. Du, T. P. Combs et al., “Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin: implications for metabolic regulation and bioactivity,” Journal of Biological Chemistry, vol. 278, no. 11, pp. 9073–9085, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Fantuzzi, “Adipose tissue, adipokines, and inflammation,” Journal of Allergy and Clinical Immunology, vol. 115, no. 5, pp. 911–920, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. G. I. Lancaster and M. A. Febbraio, “Adiponectin sphings into action,” Nature Medicine, vol. 17, no. 1, pp. 37–38, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. A. J. Walkey, T. W. Rice, J. Konter et al., “Plasma adiponectin and mortality in critically ill subjects with acute respiratory failure,” Critical Care Medicine, vol. 38, no. 12, pp. 2329–2334, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Fantuzzi, “Adiponectin and inflammation: consensus and controversy,” Journal of Allergy and Clinical Immunology, vol. 121, no. 2, pp. 326–330, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Modan-Moses, D. Stein, C. Pariente et al., “Modulation of adiponectin and leptin during refeeding of female anorexia nervosa patients,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 5, pp. 1843–1847, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Wernovsky, D. Wypij, R. A. Jonas et al., “Postoperative course and hemodynamic profile after the arterial switch operation in neonates and infants: a comparison of low-flow cardiopulmonary bypass and circulatory arrest,” Circulation, vol. 92, no. 8, pp. 2226–2235, 1995. View at Scopus
  13. B. H. Dorman, J. M. Kratz, M. M. Multani et al., “A prospective, randomized study of endothelin and postoperative recovery in off-pump versus conventional coronary artery bypass surgery,” Journal of Cardiothoracic and Vascular Anesthesia, vol. 18, no. 1, pp. 25–29, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Caselli, M. Cantinotti, S. del Ry et al., “Adiponectin plasma levels decrease after surgery in pediatric patients with congenital heart disease,” Clinical Biochemistry, vol. 45, no. 16-17, pp. 1510–1512, 2012.
  15. H. T. F. de Mendonça-Filho, K. C. Pereira, M. Fontes et al., “Circulating inflammatory mediators and organ dysfunction after cardiovascular surgery with cardiopulmonary bypass: a prospective observational study,” Critical Care, vol. 10, no. 2, article R46, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Tilg and A. R. Moschen, “Inflammatory mechanisms in the regulation of insulin resistance,” Molecular Medicine, vol. 14, no. 3-4, pp. 222–231, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Witasp, L. Nordfors, M. Schalling, J. Nygren, O. Ljungqvist, and A. Thorell, “Expression of inflammatory and insulin signaling genes in adipose tissue in response to elective surgery,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 7, pp. 3460–3469, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. P. J. Simons, P. S. van den Pangaart, J. M. F. G. Aerts, and L. Boon, “Pro-inflammatory delipidizing cytokines reduces adiponectin secretion from human adipocytes without affecting adiponectin oligomerization,” Journal of Endocrinology, vol. 192, no. 2, pp. 289–299, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Bocsi, J. Hambsch, P. Osmancik, P. Schneider, G. Valet, and A. Tárnok, “Preoperative prediction of pediatric patients with effusions and edema following cardiopulmonary bypass surgery by serological and routine laboratory data,” Critical Care, vol. 6, no. 3, pp. 226–233, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Venkatesh, I. Hickman, J. Nisbet, J. Cohen, and J. Prins, “Changes in serum adiponectin concentrations in critical illness: a preliminary investigation,” Critical Care, vol. 13, no. 4, article R105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Franke, W. Lante, V. Fackeldey et al., “Pro-inflammatory cytokines after different kinds of cardio-thoracic surgical procedures: is what we see what we know?” European Journal of Cardio-Thoracic Surgery, vol. 28, no. 4, pp. 569–575, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Ouchi and K. Walsh, “Adiponectin as an anti-inflammatory factor,” Clinica Chimica Acta, vol. 380, no. 1-2, pp. 24–30, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Zhu, S. Shi, L. Liu, J. Lv, and H. Zhang, “Increased plasma sVCAM-1 is associated with severity in IgA nephropathy,” BMC Nephrology, vol. 14, article 21, 2013. View at Publisher · View at Google Scholar
  24. D. Miłosz, L. Czupryniak, M. Saryusz-Wolska et al., “Adiponectinemia, inflammatory process activity, and endothelial dysfunction in patients with type 2 diabetes and acute coronary syndrome with ST elevation in relation to the severity of lesions in the coronary arteries,” Polskie Archiwum Medycyny Wewnetrznej, vol. 117, no. 8, pp. 343–349, 2007. View at Scopus
  25. H. Vaverkova, D. Karasek, D. Novotny et al., “Positive association of adiponectin with soluble vascular cell adhesion molecule sVCAM-1 levels in patients with vascular disease or dyslipidemia,” Atherosclerosis, vol. 197, no. 2, pp. 725–731, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Bourbon, M. Vionnet, P. Leprince et al., “The effect of methylprednisolone treatment on the cardiopulmonary bypass-induced systemic inflammatory response,” European Journal of Cardio-Thoracic Surgery, vol. 26, no. 5, pp. 932–938, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Fallo, A. Scarda, N. Sonino et al., “Effect of glucocorticoids on adiponectin: a study in healthy subjects and in Cushing's syndrome,” European Journal of Endocrinology, vol. 150, no. 3, pp. 339–344, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. H. A. Uchida, Y. Nakamura, M. Kaihara et al., “Steroid pulse therapy impaired endothelial function while increasing plasma high molecule adiponectin concentration in patients with IgA nephropathy,” Nephrology Dialysis Transplantation, vol. 21, no. 12, pp. 3475–3480, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Jang, W. J. Inder, V. R. Obeyesekere, and F. P. Alford, “Adiponectin, skeletal muscle adiponectin receptor expression and insulin resistance following dexamethasone,” Clinical Endocrinology, vol. 69, no. 5, pp. 745–750, 2008. View at Publisher · View at Google Scholar · View at Scopus