About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 412370, 9 pages
http://dx.doi.org/10.1155/2013/412370
Research Article

A Pentaplex PCR Assay for the Detection and Differentiation of Shigella Species

1Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
2Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia

Received 23 November 2012; Revised 6 January 2013; Accepted 11 January 2013

Academic Editor: Arun K. Bhunia

Copyright © 2013 Suvash Chandra Ojha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. L. Bennish and B. J. Wojtyniak, “Mortality due to shigellosis: community and hospital data,” Reviews of Infectious Diseases, vol. 13, supplement 4, pp. S245–S251, 1991. View at Scopus
  2. S. K. Niyogi, “Shigellosis,” Journal of Microbiology, vol. 43, no. 2, pp. 133–143, 2005.
  3. A. Hiranrattana, J. Mekmullica, T. Chatsuwan, C. Pancharoen, and U. Thisyakorn, “Childhood shigellosis at King Chulalongkorn Memorial Hospital, Bangkok, Thailand: a 5-year review (1996–2000),” Southeast Asian Journal of Tropical Medicine and Public Health, vol. 36, no. 3, pp. 683–685, 2005. View at Scopus
  4. S. M. Faruque, R. Khan, M. Kamruzzaman et al., “Isolation of Shigella dysenteriae type 1 and S. flexneri strains from surface waters in Bangladesh: comparative molecular analysis of environmental Shigella isolates versus clinical strains,” Applied and Environmental Microbiology, vol. 68, no. 8, pp. 3908–3913, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. K. K. B. Singh, S. C. Ojha, Z. Z. Deris, and R. A. Rahman, “A 9-year study of shigellosis in Northeast Malaysia: antimicrobial susceptibility and shifting species dominance,” Journal of Public Health, vol. 19, no. 3, pp. 231–236, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. B. A. Oyofo, M. Lesmana, D. Subekti et al., “Surveillance of bacterial pathogens of diarrhea disease in Indonesia,” Diagnostic Microbiology and Infectious Disease, vol. 44, no. 3, pp. 227–234, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Sur, T. Ramamurthy, J. Deen, and S. K. Bhattacharya, “Shigellosis: challenges & management issues,” The Indian Journal of Medical Research, vol. 120, no. 5, pp. 454–462, 2004. View at Scopus
  8. S. Ashkenazi, “Shigella infections in children: new insights,” Seminars in Pediatric Infectious Diseases, vol. 15, no. 4, pp. 246–252, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. V. L. Kodati, S. Govindan, S. Movva, S. Ponnala, and Q. Hasan, “Role of Shigella infection in endometriosis: a novel hypothesis,” Medical Hypotheses, vol. 70, no. 2, pp. 239–243, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. B. R. Warren, M. E. Parish, and K. R. Schneider, “Shigella as a foodborne pathogen and current methods for detection in food,” Critical Reviews in Food Science and Nutrition, vol. 46, no. 7, pp. 551–567, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. World Health Organization, “Initiative for Vaccine Research (IVR),” in Diarrhoeal Diseases, Shigellosis, 2009, http://www.who.int/vaccine_research/diseases/diarrhoeal/en/index6.html.
  12. P. O. Ozuah and H. Adam, “Shigella update,” Pediatrics in Review, vol. 19, no. 3, p. 100, 1998. View at Scopus
  13. P. Shears, “Shigella infections,” Annals of Tropical Medicine and Parasitology, vol. 90, no. 2, pp. 105–114, 1996.
  14. B. Edwards, “Salmonella and Shigella species,” Clinics in Laboratory Medicine, vol. 19, no. 3, pp. 469–487, 1999.
  15. K. Khalil, S. R. Khan, K. Mazhar, B. Kaijser, and G. B. Lindblom, “Occurrence and susceptibility to antibiotics of Shigella species in stools of hospitalized children with bloody diarrhea in Pakistan,” The American Journal of Tropical Medicine and Hygiene, vol. 58, no. 6, pp. 800–803, 1998. View at Scopus
  16. S. Dutta, A. Chatterjee, P. Dutta et al., “Sensitivity and performance characteristics of a direct PCR with stool samples in comparison to conventional techniques for diagnosis of Shigella and enteroinvasive Escherichia coli infection in children with acute diarrhoea in Calcutta, India,” Journal of Medical Microbiology, vol. 50, no. 8, pp. 667–674, 2001. View at Scopus
  17. M. S. Islam, M. S. Hossain, M. K. Hasan et al., “Detection of Shigellae from stools of dysentery patients by culture and polymerase chain reaction techniques,” Journal of Diarrhoeal Diseases Research, vol. 16, no. 4, pp. 248–251, 1998. View at Scopus
  18. H. S. H. Houng, O. Sethabutr, and P. Echeverria, “A simple polymerase chain reaction technique to detect and differentiate Shigella and enteroinvasive Escherichia coli in human feces,” Diagnostic Microbiology and Infectious Disease, vol. 28, no. 1, pp. 19–25, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Villalobo and A. Torres, “PCR for detection of Shigella spp. in mayonnaise,” Applied and Environmental Microbiology, vol. 64, no. 4, pp. 1242–1245, 1998. View at Scopus
  20. K. L. Thong, S. L. L. Hoe, S. D. Puthucheary, and R. M. Yasin, “Detection of virulence genes in Malaysian Shigella species by multiplex PCR assay,” BMC Infectious Diseases, vol. 5, no. 8, pp. 1–7, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. GenBank, http://www.ncbi.nlm.nih.gov/.
  22. GeneDoc, http://www.nrbsc.org/downloads/.
  23. Molecular Diagnostic Methods for Infectious Diseases, Approved Guideline (CLSI MM3-A2), vol. 26, 2nd edition, 2006.
  24. R. Schuch and A. T. Maurelli, “Virulence plasmid instability in Shigella flexneri 2a is induced by virulence gene expression,” Infection and Immunity, vol. 65, no. 9, pp. 3686–3692, 1997. View at Scopus
  25. K. R. S. Aranda, U. Fagundes-Neto, and I. C. A. Scaletsky, “Evaluation of multiplex PCRs for diagnosis of infection with diarrheagenic Escherichia coli and Shigella spp,” Journal of Clinical Microbiology, vol. 42, no. 12, pp. 5849–5853, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Luo, S. Wang, and X. Peng, “Identification of shiga toxin-producing bacteria by a new immuno-capture toxin gene PCR,” FEMS Microbiology Letters, vol. 216, no. 1, pp. 39–42, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. V. D. Thiem, O. Sethabutr, L. von Seidlein et al., “Detection of Shigella by a PCR assay targeting the ipaH gene suggests increased prevalence of shigellosis in Nha Trang, Vietnam,” Journal of Clinical Microbiology, vol. 42, no. 5, pp. 2031–2035, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. X. Peng, W. Luo, J. Zhang, S. Wang, and S. Lin, “Rapid detection of Shigella species in environmental sewage by an immunocapture PCR with universal primers,” Applied and Environmental Microbiology, vol. 68, no. 5, pp. 2580–2583, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Theron, D. Morar, M. Du Preez, V. S. Brözel, and S. N. Venter, “A sensitive seminested PCR method for the detection of Shigella in spiked environmental water samples,” Water Research, vol. 35, no. 4, pp. 869–874, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. M. P. Jackson, “Detection of shiga toxin-producing Shigella dysenteriae type 1 and Escherichia coli by using polymerase chain reaction with incorporation of digoxigenin-11-dUTP,” Journal of Clinical Microbiology, vol. 29, no. 9, pp. 1910–1914, 1991. View at Scopus
  31. C. I. B. Kingombe, M. L. Cerqueira-Campos, and J. M. Farber, “Molecular strategies for the detection, identification, and differentiation between enteroinvasive Escherichia coli and Shigella spp,” Journal of Food Protection, vol. 68, no. 2, pp. 239–245, 2005. View at Scopus
  32. O. Sethabutr, M. Venkatesan, S. Yam et al., “Detection of PCR products of the ipaH gene from Shigella and enteroinvasive Escherichia coli by enzyme linked immunosorbent assay,” Diagnostic Microbiology and Infectious Disease, vol. 37, no. 1, pp. 11–16, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. D. R. Call, “Challenges and opportunities for pathogen detection using DNA microarrays,” Critical Reviews in Microbiology, vol. 31, no. 2, pp. 91–99, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. M. J. Farfán, T. A. Garay, C. A. Prado, I. Filliol, M. T. Ulloa, and C. S. Toro, “A new multiplex PCR for differential identification of Shigella flexneri and Shigella sonnei and detection of Shigella virulence determinants,” Epidemiology and Infection, vol. 138, no. 4, pp. 525–533, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. O. G. Gómez-Duarte, J. Bai, and E. Newell, “Detection of Escherichia coli, Salmonella spp., Shigella spp., Yersinia enterocolitica, Vibrio cholerae, and Campylobacter spp. enteropathogens by 3-reaction multiplex polymerase chain reaction,” Diagnostic Microbiology and Infectious Disease, vol. 63, no. 1, pp. 1–9, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Rossen, P. Nørskov, K. Holmstrøm, and O. Rasmussen, “Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions,” International Journal of Food Microbiology, vol. 17, no. 1, pp. 37–45, 1992.
  37. I. Wilson, “Inhibition and facilitation of nucleic acid amplification,” Applied and Environmental Microbiology, vol. 63, no. 10, pp. 3741–3751, 1997.
  38. W. I. Taylor and D. Schelhart, “Effect of temperature on transport and plating media for enteric pathogens,” Journal of Clinical Microbiology, vol. 2, no. 4, pp. 281–286, 1975. View at Scopus
  39. M. Yavzori, D. Cohen, R. Wasserlauf, R. Ambar, G. Rechavi, and S. Ashkenazi, “Identification of Shigella species in stool specimens by DNA amplification of different loci of the Shigella virulence plasmid,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 13, no. 3, pp. 232–237, 1994. View at Scopus