About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 413450, 6 pages
http://dx.doi.org/10.1155/2013/413450
Research Article

Transcription Regulation of Plastid Genes Involved in Sulfate Transport in Viridiplantae

Institute for Information Transmission Problems (Kharkevich Institute), The Russian Academy of Sciences, Moscow 127994, Russia

Received 1 April 2013; Accepted 12 June 2013

Academic Editor: William Piel

Copyright © 2013 Vassily A. Lyubetsky et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Tartar, D. G. Boucias, B. J. Adams, and J. J. Becnel, “Phylogenetic analysis identifies the invertebrate pathogen Helicosporidium sp. as a green alga (Chlorophyta),” International Journal of Systematic and Evolutionary Microbiology, vol. 52, no. 1, pp. 273–279, 2002. View at Scopus
  2. A. P. de Koning and P. J. Keeling, “The complete plastid genome sequence of the parasitic green alga Helicosporidium sp. is highly reduced and structured,” BMC Biology, vol. 4, article 12, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. J.-F. Pombert and P. J. Keeling, “The mitochondrial genome of the entomoparasitic green alga Helicosporidium,” PloS ONE, vol. 5, no. 1, Article ID e8954, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. T. A. Sadovskaya and A. V. Seliverstov, “Analysis of the 5°-Leader regions of several plastid genes in protozoa of the phylum apicomplexa and red algae,” Molecular Biology, vol. 43, no. 4, pp. 552–556, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Tajima, S. Sato, F. Maruyama et al., “Genomic structure of the cyanobacterium synechocystis sp. PCC 6803 strain GT-S,” DNA Research, vol. 18, no. 5, pp. 393–399, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Thelwell, N. J. Robinson, and J. S. Turner-Cavet, “An SmtB-like repressor from synechocystis PCC 6803 regulates a zinc exporter,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 18, pp. 10728–10733, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Takahashi and K. Saito, “Subcellular localization of spinach cysteine synthase isoforms and regulation of their gene expression by nitrogen and sulfur,” Plant Physiology, vol. 112, no. 1, pp. 273–280, 1996. View at Scopus
  8. N. Thomsen-Zieger, J. Schachtner, and F. Seeber, “Apicomplexan parasites contain a single lipoic acid synthase located in the plastid,” FEBS Letters, vol. 547, no. 1–3, pp. 80–86, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. N. M. Kredich, “The molecular basis for positive regulation of cys promoters in Salmonella typhimurium and Escherichia coli,” Molecular Microbiology, vol. 6, no. 19, pp. 2747–2753, 1992. View at Publisher · View at Google Scholar · View at Scopus
  10. A. S. Lynch, R. Tyrrell, S. J. Smerdon, G. S. Briggs, and A. J. Wilkinson, “Characterization of the CysB protein of Klebsiella aerogenes: direct evidence that N-acetylserine rather than O-acetylserine serves as the inducer of the cysteine regulon,” Biochemical Journal, vol. 299, no. 1, pp. 129–136, 1994. View at Scopus
  11. O. A. Zverkov, L. Rusin Yu, A. V. Seliverstov, and V. A. Lyubetsky, “Study of direct repeats in micro evolution of plant mitochondria and plastids based on protein clustering,” Moscow University Biological Sciences Bulletin, vol. 68, no. 2, pp. 58–62, 2013.
  12. O. A. Zverkov, A. V. Seliverstov, and V. A. Lyubetsky, “Plastid-encoded protein families specific for narrow taxonomic groups of algae and protozoa,” Molecular Biology, vol. 46, no. 5, pp. 717–726, 2012.
  13. A. V. Seliverstov, E. A. Lysenko, and V. A. Lyubetsky, “Rapid evolution of promoters for the plastome gene ndhF in flowering plants,” Russian Journal of Plant Physiology, vol. 56, no. 6, pp. 838–845, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. V. A. Lyubetsky, L. I. Rubanov, and A. V. Seliverstov, “Lack of conservation of bacterial type promoters in plastids of Streptophyta,” Biology Direct, vol. 5, article 34, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. V. A. Lyubetsky, O. A. Zverkov, L. I. Rubanov, and A. V. Seliverstov, “Modeling RNA polymerase competition: the effect of σ-subunit knockout and heat shock on gene transcription level,” Biology Direct, vol. 6, article 3, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. V. A. Lyubetsky, O. A. Zverkov, S. A. Pirogov, L. I. Rubanov, and A. V. Seliverstov, “Modeling RNA polymerase interaction in mitochondria of chordates,” Biology Direct, vol. 7, article 26, 2012.
  17. A. Homann and G. Link, “DNA-binding and transcription characteristics of three cloned sigma factors from mustard (Sinapis alba L.) suggest overlapping and distinct roles in plastid gene expression,” European Journal of Biochemistry, vol. 270, no. 6, pp. 1288–1300, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. V. A. Lyubetsky and A. V. Seliverstov, “Some algorithms related to finite groups,” Information Processes, vol. 3, no. 1, pp. 39–46, 2003 (Russian).
  19. Z. Su, V. Olman, F. Mao, and Y. Xu, “Comparative genomics analysis of NtcA regulons in cyanobacteria: regulation of nitrogen assimilation and its coupling to photosynthesis,” Nucleic Acids Research, vol. 33, no. 16, pp. 5156–5171, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins, “The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools,” Nucleic Acids Research, vol. 25, no. 24, pp. 4876–4882, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. N. J. Wickett, L. L. Forrest, J. M. Budke, B. Shaw, and B. Goffinet, “Frequent pseudogenization and loss of the plastid-encoded sulfate-transport gene cysA throughout the evolution of liverworts,” American Journal of Botany, vol. 98, no. 8, pp. 1263–1275, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. V. A. Lyubetsky, A. V. Seliverstov, and O. A. Zverkov, “Elaboration of the homologous plastid-encoded protein families that separate paralogs in magnoliophytes,” Mathematical Biology and Bioinformatics, vol. 8, no. 1, pp. 225–233, 2013 (Russian).
  23. E. V. Koonin, Y. I. Wolf, and L. Aravind, “Protein fold recognition using sequence profiles and its application in structural genomics,” Advances in Protein Chemistry, vol. 54, pp. 245–275, 2000. View at Scopus
  24. M. Punta, P. C. Coggill, R. Y. Eberhardt et al., “The Pfam protein families database,” Nucleic Acids Research, Database Issue 40, pp. D290–D301, 2012.
  25. R. J. M. Wilson, K. Rangachari, J. W. Saldanha et al., “Parasite plastids: maintenance and functions,” Philosophical Transactions of the Royal Society B, vol. 358, no. 1429, pp. 155–164, 2003. View at Publisher · View at Google Scholar · View at Scopus