About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 418604, 8 pages
http://dx.doi.org/10.1155/2013/418604
Research Article

Quantitative PCR as an Alternative in the Diagnosis of Long-QT Syndrome

Department of Biochemistry, Medical University of Silesia, Narcyzów 1, 41-200 Sosnowiec, Poland

Received 12 April 2013; Revised 13 June 2013; Accepted 13 June 2013

Academic Editor: Etsuro Ito

Copyright © 2013 Ewa Moric-Janiszewska et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Zareba and I. Cygankiewicz, “Long QT syndrome and short QT syndrome,” Progress in Cardiovascular Diseases, vol. 51, no. 3, pp. 264–278, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. J. B. Saenen and C. J. Vrints, “Molecular aspects of the congenital and acquired Long QT syndrome: clinical implications,” Journal of Molecular and Cellular Cardiology, vol. 44, no. 4, pp. 633–646, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Moric-Janiszewska, J. Głogowska-Ligus, M. Paul-Samojedny et al., “Expression of genes KCNQ1 and HERG encoding potassium ion channels Ikr, Iks in long QT syndrome,” Kardiologia Polska, vol. 69, no. 5, pp. 423–429, 2011. View at Scopus
  4. W. Shimizu, “The long QT syndrome: therapeutic implications of a genetic diagnosis,” Cardiovascular Research, vol. 67, no. 3, pp. 347–356, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. N. El-Sherif, R. Pedalino, and H. Himel IV, “Role of pharmacotherapy in cardiac ion channelopathies,” Current Vascular Pharmacology, vol. 7, no. 3, pp. 358–366, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Barc, F. Briec, S. Schmitt et al., “Screening for copy number variation in genes associated with the long QT syndrome: clinical relevance,” Journal of the American College of Cardiology, vol. 57, no. 1, pp. 40–47, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Moric-Janiszewska, J. Głogowska-Ligus, M. Paul-Samojedny, L. Wȩglarz, G. Markiewicz-Łoskot, and L. Szydłowski, “Age- and sex-dependent mRNA expression of KCNQ1 and HERG in patients with long QT syndrome type 1 and 2,” Archives of Medical Science, vol. 7, no. 6, pp. 941–947, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Moric-Janiszewska and M. Głowacka, “Molecular diagnostics of families with long-QT syndrome,” Cardiology Journal, vol. 19, no. 2, pp. 159–167, 2012.
  9. Y. Yang, Y. Yang, B. Liang et al., “Identification of a Kir3.4 mutation in congenital long QT syndrome,” American Journal of Human Genetics, vol. 86, no. 6, pp. 872–880, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Refsgaard, A. G. Holst, G. Sadjadieh, S. Haunsø, J. B. Nielsen, and M. S. Olesen, “High prevalence of genetic variants previously associated with LQT syndrome in new exome data,” European Journal of Human Genetics, vol. 20, no. 8, pp. 905–908, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Jimenez-Jaimez, L. Tercedor-Sanchez, M. Alvarez-Lopez, et al., “Genetic testing of patients with long QT syndrome,” Revista Española De Cardiología, vol. 64, no. 1, pp. 71–74, 2011.
  12. S. A. Bustin and R. Mueller, “Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis,” Clinical Science, vol. 109, no. 4, pp. 365–379, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. S. A. Bustin, “Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems,” Journal of Molecular Endocrinology, vol. 29, no. 1, pp. 23–39, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Wiedro, E. Stachowska, and D. Chlubek, “Real-time polymerase chain reaction (RT-PCR),” Annales Academiae Medicae Stetinensis, vol. 53, no. 3, pp. 5–9, 2007 (Polish). View at Scopus
  15. A. Wyczałkowska-Tomasik and J. Żegarska, “Real-time polymerase chain reaction—applications in research and clinical molecular diagnostics,” Przegląd Lekarski, vol. 66, no. 4, 2009 (Polish).
  16. A. Filipecki, “Kanałopatie—wspólne stanowisko ekspertów EHRA I HRS w sprawie badań genetycznych,” W Dobrym Rytmie, vol. 3, pp. 13–17, 2011 (Polish).
  17. J. D. Kapplinger, D. J. Tester, B. A. Salisbury et al., “Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the FAMILION long QT syndrome genetic test,” Heart Rhythm, vol. 6, no. 9, pp. 1297–1303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. M. J. Ackerman, S. G. Priori, S. Willems, et al., “HRS/EHRA Expert Consensus Statement on the State of Genetic Testing for the Channelopathies and Cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhytm Association (EHRA),” Europace, vol. 13, no. 8, pp. 1077–1011, 2011.
  19. D. J. Tester and M. J. Ackerman, “Genetic testing for potentially lethal, highly treatable inherited cardiomyopathies/channelopathies in clinical practice,” Circulation, vol. 123, no. 9, pp. 1021–1037, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Markiewicz-Łoskot, E. Moric-Janiszewska, and U. Mazurek, “The risk of cardiac events and genotype-based management of LQTS patients,” Annals of Noninvasive Electrocardiology, vol. 14, no. 1, pp. 86–92, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Olszak, G. Parol-Baran, M. Dziuk, and T. Stelmaszuk, “Abnormal QT interval syndromes,” Polski Przegląd Kardiologiczny, vol. 7, no. 6, pp. 513–518, 2005 (Polish).
  22. M. A. Szeliga, P. L. Hedley, C. P. Green, D. V. Møller, and M. Christiansen, “Long QT syndrome—a genetic cardiac channelopathy,” Kardiologia Polska, vol. 68, no. 5, pp. 575–583, 2010. View at Scopus
  23. A. Medeiros-Domingo, P. Iturralde-Torres, and M. J. Ackerman, “Clinical and genetic characteristics of long QT syndrome,” Revista Espanola de Cardiologia, vol. 60, no. 7, pp. 739–752, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Herbert, M. Trusz-Gluza, E. Moric, E. Śmiłowska-Dzielicka, U. Mazurek, and T. Wilczok, “The polymorphism of the HERG gene responsible for the autosomal dominant long-QT syndrome,” Folia Cardiologica, vol. 9, no. 3, pp. 193–202, 2002. View at Scopus
  25. D. J. Chadwick and J. Goode, Eds., The hERG Cardiac Potassium Channel: Structure, Function and Long QT Syndrome: Novartis Foundation Symposium 266, John Wiley & Sons, 2005.
  26. S. J. Coker, “Drugs for men and women—how important is gender as a risk factor for TdP?” Pharmacology & Therapeutics, vol. 119, no. 2, pp. 186–194, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Hreiche, P. Morissette, and J. Turgeon, “Drug-induced long QT syndrome in women: review of current evidence and remaining gaps,” Gender Medicine, vol. 5, no. 2, pp. 124–135, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. P. Huang, R. L. Neppl, and D. Z. Wang, “MicroRNAs in cardiac remodeling and disease,” Journal of Cardiovascular Translational Research, vol. 3, no. 3, pp. 212–218, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. X. Luo, H. Zhang, J. Xiao, and Z. Wang, “Regulation of human cardiac Ion channel genes by MicroRNAs: theoretical perspective and pathophysiological implications,” Cellular Physiology and Biochemistry, vol. 25, no. 6, pp. 571–586, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Egger, G. Liang, A. Aparicio, and P. A. Jones, “Epigenetics in human disease and prospects for epigenetic therapy,” Nature, vol. 429, no. 6990, pp. 457–463, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. T. E. Miller, L. You, R. J. Myerburg, P. J. Benke, and N. H. Bishopric, “Whole blood RNA offers a rapid, comprehensive approach to genetic diagnosis of cardiovascular diseases,” Genetics in Medicine, vol. 9, no. 1, pp. 23–33, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. W. Zarȩba, “Counting mRNA in blood of LQTS—new direction?” Kardiologia Polska, vol. 69, no. 5, p. 430, 2011. View at Scopus