About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 420287, 12 pages
http://dx.doi.org/10.1155/2013/420287
Research Article

Characterization of the Bacterial Community Associated with Larvae and Adults of Anoplophora chinensis Collected in Italy by Culture and Culture-Independent Methods

1Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
2Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy

Received 16 April 2013; Accepted 9 July 2013

Academic Editor: George Tsiamis

Copyright © 2013 Aurora Rizzi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. Dillon and V. M. Dillon, “The gut bacteria of insects: nonpathogenic interactions,” Annual Review of Entomology, vol. 49, pp. 71–92, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Breznak and A. Brune, “Role of microorganisms in the digestion of lignocellulose by termites,” Annual Review of Entomology, vol. 39, pp. 453–487, 1994. View at Scopus
  3. M. Ohkuma, “Termite symbiotic systems: efficient bio-recycling of lignocellulose,” Applied Microbiology and Biotechnology, vol. 61, no. 1, pp. 1–9, 2003. View at Scopus
  4. A. E. Douglas, “Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera,” Annual Review of Entomology, vol. 43, pp. 17–37, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Shigenobu, H. Watanabe, M. Hattori, Y. Sakaki, and H. Ishikawa, “Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS,” Nature, vol. 407, no. 6800, pp. 81–86, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. A. E. Douglas, “The microbial dimension in insect nutritional ecology,” Functional Ecology, vol. 23, no. 1, pp. 38–47, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Crotti, C. Damiani, M. Pajoro et al., “Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders,” Environmental Microbiology, vol. 11, no. 12, pp. 3252–3264, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Damiani, I. Ricci, E. Crotti et al., “Paternal transmission of symbiotic bacteria in malaria vectors,” Current Biology, vol. 18, no. 23, pp. R1087–R1088, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Favia, I. Ricci, C. Damiani et al., “Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 21, pp. 9047–9051, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Gonella, E. Crotti, A. Rizzi et al., “Horizontal transmission of the symbiotic bacterium Asaia sp. in the leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae),” BMC Microbiology, vol. 12, no. 1, article S4, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Koga, X.-Y. Meng, T. Tsuchida, and T. Fukatsu, “Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte-embryo interface,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 20, pp. 1230–1237, 2012.
  12. E. Crotti, A. Balloi, C. Hamdi et al., “Microbial symbionts: a resource for the management of insect-related problems,” Microbial Biotechnology, vol. 5, no. 3, pp. 307–317, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Ricci, C. Damiani, P. Rossi et al., “Mosquito symbioses: from basic research to the paratransgenic control of mosquito-borne diseases,” Journal of Applied Entomology, vol. 135, no. 7, pp. 487–493, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Hamdi, A. Balloi, J. Essanaa et al., “Gut microbiome dysbiosis and honeybee health,” Journal of Applied Entomology, vol. 135, no. 7, pp. 524–533, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Colombo and L. Limonta, “Anoplophora malasiaca Thomson (Coleoptera Cerambycidae Lamiinae Lamiini) in Europe,” Bollettino di Zoologia Agraria e di Bachicoltura, no. 33, Ser. 2, pp. 65–68, 2001.
  16. R. A. Haack, F. Hérard, J. Sun, and J. J. Turgeon, “Managing invasive populations of asian longhorned beetle and citrus longhorned beetle: a worldwide perspective,” Annual Review of Entomology, vol. 55, pp. 521–546, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. K. D. Klepzig, A. S. Adams, J. Handelsman, and K. F. Raffa, “Symbioses: a key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans,” Environmental Entomology, vol. 38, no. 1, pp. 67–77, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. M. Geib, M. D. M. Jimenez-Gasco, J. E. Carlson, M. Tien, and K. Hoover, “Effect of host tree species on cellulase activity and bacterial community composition in the gut of larval asian longhorned beetle,” Environmental Entomology, vol. 38, no. 3, pp. 686–699, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. P. D. Schloss, I. Delalibera Jr., J. Handelsman, and K. F. Raffa, “Bacteria associated with the guts of two wood-boring beetles: Anoplophora glabripennis and Saperda vestita (Cerambycidae),” Environmental Entomology, vol. 35, no. 3, pp. 625–629, 2006. View at Scopus
  20. E. D. Scully, K. Hoover, J. Carlson, M. Tien, and S. M. Geib, “Proteomic analysis of Fusarium solani isolated from the asian longhorned beetle, Anoplophora glabripennis,” PLoS ONE, vol. 7, no. 4, Article ID e32990, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. C.-J. Chang, C. P. Wu, S.-C. Lu et al., “A novel exo-cellulase from white spotted longhorn beetle (Anoplophora malasiaca),” Insect Biochemistry and Molecular Biology, vol. 42, no. 9, pp. 629–636, 2012.
  22. V. A. Cavalcante and J. Dobereiner, “A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane,” Plant and Soil, vol. 108, no. 1, pp. 23–31, 1988. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Rizzi, L. Panebianco, D. Giaccu, C. Sorlini, and D. Daffonchio, “Stability and recovery of maize DNA during food processing,” Italian Journal of Food Science, vol. 15, no. 4, pp. 499–510, 2003. View at Scopus
  24. E. F. DeLong, “Archaea in coastal marine environments,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 12, pp. 5685–5689, 1992. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Messing, “New M13 vectors for cloning,” Methods in Enzymology, vol. 101, pp. 20–78, 1983. View at Scopus
  26. A. M. Sass, H. Sass, M. J. L. Coolen, H. Cypionka, and J. Overmann, “Microbial communities in the chemocline of a hypersaline deep-sea Basin (Urania Basin, Mediterranean Sea),” Applied and Environmental Microbiology, vol. 67, no. 12, pp. 5392–5402, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Gonella, I. Negri, M. Marzorati et al., “Bacterial endosymbiont localization in Hyalesthes obsoletus, the insect vector of bois noir in Vitis vinifera,” Applied and Environmental Microbiology, vol. 77, no. 4, pp. 1423–1435, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Raddadi, E. Gonella, C. Camerota et al., ““Candidatus Liberibacter europaeus” sp. nov. that is associated with and transmitted by the psyllid Cacopsylla pyri apparently behaves as an endophyte rather than a pathogen,” Environmental Microbiology, vol. 13, no. 2, pp. 414–426, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Merlino, A. Rizzi, F. Villa et al., “Shifts of microbial community structure during anaerobic digestion of agro-industrial energetic crops and food industry byproducts,” Journal of Chemical Technology and Biotechnology, vol. 87, no. 9, pp. 1302–1311, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Grünwald, M. Pilhofer, and W. Höll, “Microbial associations in gut systems of wood- and bark-inhabiting longhorned beetles [Coleoptera: Cerambycidae],” Systematic and Applied Microbiology, vol. 33, no. 1, pp. 25–34, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Vasanthakumar, I. Delalibera, J. Handelsman, et al., “Characterization of gut-associated bacteria in larvae and adults of the southern pine beetle, Dendroctonus frontalis Zimmermann,” Environmental Entomology, vol. 35, no. 6, pp. 1710–1717, 2006.
  33. H. Yilmaz, K. Sezen, H. Kati, and Z. Demirbaǧ, “The first study on the bacterial flora of the European spruce bark beetle, Dendroctonus micans (Coleoptera: Scolytidae),” Biologia, vol. 61, no. 6, pp. 679–686, 2006. View at Scopus
  34. J. Morales-Jiménez, G. Zúñiga, L. Villa-Tanaca, and C. Hernández-Rodríguez, “Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae),” Microbial Ecology, vol. 58, no. 4, pp. 879–891, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Morales-Jiménez, G. Zúñiga, H. C. Ramírez-Saad, and C. Hernández-Rodríguez, “Gut-associated bacteria throught the life cycle of the bark beetle Dendroctonous rhizophagus Thomas and Bright (Curculionidae: Scolytinae) and their cellulolytic activities,” Microbial Ecology, pp. 1–11, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. D. R. Colman, E. C. Toolson, and C. D. Takacs-Vesbach, “Do diet and taxonomy influence insect gut bacterial communities?” Molecular Ecology, vol. 21, no. 20, pp. 5124–5137, 2012.
  37. A. Vasanthakumar, J. O. Handelsman, P. D. Schloss, L. S. Bauer, and K. F. Raffa, “Gut microbiota of an invasive Subcortical Beetle, Agrilus planipennis fairmaire, across various life stages,” Environmental Entomology, vol. 37, no. 5, pp. 1344–1353, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. J. B. Nardi, R. I. Mackie, and J. O. Dawson, “Could microbial symbionts of arthropod guts contribute significantly to nitrogen fixation in terrestrial ecosystems?” Journal of Insect Physiology, vol. 48, no. 8, pp. 751–763, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Behar, B. Yuval, and E. Jurkevitch, “Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata,” Molecular Ecology, vol. 14, no. 9, pp. 2637–2643, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Dillon and K. Charnley, “Mutualism between the desert locust Schistocerca gregaria and its gut microbiota,” Research in Microbiology, vol. 153, no. 8, pp. 503–509, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Watanabe and G. Tokuda, “Cellulolytic systems in insects,” Annual Review of Entomology, vol. 55, pp. 609–632, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. C.-J. Chang, C. P. Wu, S.-C. Lu, et al., “A novel exo-cellulase from white spotted longhorn beetle (Anoplophora malasiaca),” Insect Biochemistry and Molecular Biology, vol. 42, pp. 629–636, 2012.
  43. D. C. Kalyani, S. S. Phugare, U. U. Shedbalkar, and J. P. Jadhav, “Purification and characterization of a bacterial peroxidase from the isolated strain Pseudomonas sp. SUK1 and its application for textile dye decolorization,” Annals of Microbiology, vol. 61, no. 3, pp. 483–491, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. G. K. Parshetti, S. Parshetti, D. C. Kalyani, R.-A. Doong, and S. P. Govindwar, “Industrial dye decolorizing lignin peroxidase from Kocuria rosea MTCC 1532,” Annals of Microbiology, vol. 62, pp. 217–223, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. T. D. Bugg, M. Ahmad, E. M. Hardiman, and R. Singh, “The emerging role for bacteria in lignin degradation and bio-product formation,” Current Opinion in Biotechnology, vol. 22, no. 3, pp. 394–400, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. N. Calderon-Cortes, M. Quesada, H. Watanabe, H. Cano-Camacho, and K. Oyama, “Endogenous plant cell wall digestion: a key mechanism in insect evolution,” Annual Review of Ecology, Evolution, and Systematics, vol. 43, pp. 45–71, 2012.
  47. E. D. Scully, K. Hoover, J. Carlson, M. Tien, and S. M. Geib, “Proteomic analysis of Fusarium solani isolated from the asian longhorned beetle, Anoplophora glabripennis,” PLoS ONE, vol. 7, no. 4, Article ID e32990, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. V. Popa, E. Déziel, R. Lavallée, E. Bauce, and C. Guertin, “The complex symbiotic relationships of bark beetles with microorganisms: a potential practical approach for biological control in forestry,” Pest Management Science, vol. 68, no. 7, pp. 963–975, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. J. Cardoza, K. D. Klepzig, and K. F. Raffa, “Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi,” Ecological Entomology, vol. 31, no. 6, pp. 636–645, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Kaltenpoth, “Actinobacteria as mutualists: general healthcare for insects?” Trends in Microbiology, vol. 17, no. 12, pp. 529–535, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. S. M. Geib, M. del Mar Jimenez-Gasco, J. E. Carlson, M. Tien, R. Jabbour, and K. Hoover, “Microbial community profiling to investigate transmission of bacteria between life stages of the wood-boring beetle, Anoplophora glabripennis,” Microbial Ecology, vol. 58, no. 1, pp. 199–211, 2009. View at Publisher · View at Google Scholar · View at Scopus