About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 427640, 10 pages
http://dx.doi.org/10.1155/2013/427640
Research Article

Chronic Inhibition of 11β-Hydroxysteroid Dehydrogenase Type 1 Activity Decreases Hypertension, Insulin Resistance, and Hypertriglyceridemia in Metabolic Syndrome

Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline, UW2521, P.O. Box 1539, 709 Swedeland Road, King of Prussia, PA 19406-0939, USA

Received 5 October 2012; Accepted 18 February 2013

Academic Editor: Joseph Fomusi Ndisang

Copyright © 2013 Christine G. Schnackenberg et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. “Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III),” The Journal of the American Medical Association, vol. 285, no. 19, pp. 2486–2497, 2001. View at Scopus
  2. S. M. Grundy, J. I. Cleeman, S. R. Daniels et al., “Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement,” Circulation, vol. 112, no. 17, pp. 2735–2752, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Lorenzo, K. Williams, K. J. Hunt, and S. M. Haffner, “Trend in the prevalence of the metabolic syndrome and its impact on cardiovascular disease incidence: the San Antonio heart study,” Diabetes Care, vol. 29, no. 3, pp. 625–630, 2006. View at Scopus
  4. E. S. Ford, W. H. Giles, and A. H. Mokdad, “Increasing prevalence of the metabolic syndrome among U.S. Adults,” Diabetes Care, vol. 27, no. 10, pp. 2444–2449, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. B. R. Walker, “Glucocorticoids and cardiovascular disease,” European Journal of Endocrinology, vol. 157, no. 5, pp. 545–559, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. E. Goodwin and D. S. Geller, “Glucocorticoid-induced hypertension,” Pedatric Nephrology, vol. 27, no. 7, pp. 1059–1066, 2012.
  7. G. P. Chrousos and T. Kino, “Intracellular glucocorticoid signaling: a formerly simple system turns stochastic,” Science's STKE, vol. 2005, no. 304, p. pe48, 2005. View at Scopus
  8. A. Hermanowski-Vosatka, J. M. Balkovec, K. Cheng et al., “11β-HSD1 inhibition ameliorates metabolic syndrome and prevents progression of atherosclerosis in mice,” The Journal of Experimental Medicine, vol. 202, no. 4, pp. 517–527, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. G. R. Small, P. W. F. Hadoke, I. Sharif et al., “Preventing local regeneration of qlucocorticoids by 11β-hydroxysteroid dehydrogenase type 1 enhances angiogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 34, pp. 12165–12170, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Hautanen, K. Räikkönen, and H. Adlercreutz, “Associations between pituitary-adrenocortical function and abdominal obesity, hyperinsulinaemia and dyslipidaemia in normotensive males,” Journal of Internal Medicine, vol. 241, no. 6, pp. 451–461, 1997. View at Scopus
  11. B. R. Walker, D. I. W. Phillips, J. P. Noon et al., “Increased glucocorticoid activity in men with cardiovascular risk factors,” Hypertension, vol. 31, no. 4, pp. 891–895, 1998. View at Scopus
  12. J. Filipovský, P. Ducimetière, E. Eschwège, J. L. Richard, G. Rosselin, and J. R. Claude, “The relationship of blood pressure with glucose, insulin, heart rate, free fatty acids and plasma cortisol levels according to degree of obesity in middle-aged men,” Journal of Hypertension, vol. 14, no. 2, pp. 229–235, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. B. R. Walker, J. C. Campbell, R. Fraser, P. M. Stewart, and C. R. W. Edwards, “Mineralocorticoid excess and inhibition of 11β-hydroxysteroid dehydrogenase in patients with ectopic ACTH syndrome,” Clinical Endocrinology, vol. 37, no. 6, pp. 483–492, 1992. View at Scopus
  14. M. A. Magiakou, P. Smyrnaki, and G. P. Chrousos, “Hypertension in Cushing's syndrome,” Best Practice and Research, vol. 20, no. 3, pp. 467–482, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Monder and P. C. White, “11β-hydroxysteroid dehydrogenase,” Vitamins and Hormones, vol. 47, pp. 187–271, 1993. View at Publisher · View at Google Scholar · View at Scopus
  16. B. R. Walker, J. C. Campbell, B. C. Williams, and C. R. W. Edwards, “Tissue-specific distribution of the NAD+-dependent isoform of 11β- hydroxysteroid dehydrogenase,” Endocrinology, vol. 131, no. 2, pp. 970–972, 1992. View at Publisher · View at Google Scholar · View at Scopus
  17. R. E. Smith, J. A. Maguire, A. N. Stein-Oakley et al., “Localization of 11β-hydroxysteroid dehydrogenase type II in human epithelial tissues,” Journal of Clinical Endocrinology and Metabolism, vol. 81, no. 9, pp. 3244–3248, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Ulick, L. S. Levine, and P. Gunczler, “A syndrome of apparent mineralocorticoid excess associated with defects in the peripheral metabolism of cortisol,” Journal of Clinical Endocrinology and Metabolism, vol. 49, no. 5, pp. 757–764, 1979. View at Scopus
  19. P. M. Stewart, J. E. T. Corrie, C. H. L. Shackleton, and C. R. W. Edwards, “Syndrome of apparent mineralocorticoid excess. A defect in the cortisol-cortisone shuttle,” Journal of Clinical Investigation, vol. 82, no. 1, pp. 340–349, 1988. View at Scopus
  20. J. M. Paterson, N. M. Morton, C. Fievet et al., “Metabolic syndrome without obesity: hepatic overexpression of 11β-hydroxysteroid dehydrogenase type 1 in transgenic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 18, pp. 7088–7093, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Masuzaki, H. Yamamoto, C. J. Kenyon et al., “Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice,” Journal of Clinical Investigation, vol. 112, no. 1, pp. 83–90, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Kotelevtsev, M. C. Holmes, A. Burchell et al., “11β-Hydroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoid-inducible responses and resist hyperglycemia on obesity or stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 26, pp. 14924–14929, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. P. U. Feig, S. Shah, A. Hermanowski-Vosatka et al., “Effects of an 11β-hydroxysteroid dehydrogenase type 1 inhibitor, MK-0916, in patients with type 2 diabetes mellitus and metabolic syndrome,” Diabetes, Obesity and Metabolism, vol. 13, no. 6, pp. 498–504, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Shah, A. Hermanowski-Vosatka, K. Gibson et al., “Efficacy and safety of the selective 11β-HSD-1 inhibitors MK-0736 and MK-0916 in overweight and obese patients with hypertension,” Journal of the American Society of Hypertension, vol. 5, no. 3, pp. 166–176, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Nagase, H. Matsui, S. Shibata, T. Gotoda, and T. Fujita, “Salt-induced nephropathy in obese spontaneously hypertensive rats via paradoxical activation of the mineralocorticoid receptor: role of oxidative stress,” Hypertension, vol. 50, no. 5, pp. 877–883, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Kagota, Y. Yamaguchi, N. Tanaka et al., “Disturbances in nitric oxide/cyclic guanosine monophosphate system in SHR/NDmcr-cp rats, a model of metabolic syndrome,” Life Sciences, vol. 78, no. 11, pp. 1187–1196, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. O. E. Michaelis, K. C. Ellwood, and J. M. Judge, “Effect of dietary sucrose on the SHR/N-corpulent rat: a new model for insulin-independent diabetes,” American Journal of Clinical Nutrition, vol. 39, no. 4, pp. 612–618, 1984. View at Scopus
  28. X. Gu, J. Dragovic, G. C. Koo et al., “Discovery of 4-heteroarylbicyclo[2.2.2]octyltriazoles as potent and selective inhibitors of 11β-HSD1: novel therapeutic agents for the treatment of metabolic syndrome,” Bioorganic and Medicinal Chemistry Letters, vol. 15, no. 23, pp. 5266–5269, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. D. E. W. Livingstone, C. J. Kenyon, and B. R. Walker, “Mechanisms of dysregulation of 11β-hydroxysteroid dehydrogenase type I in obese zucker rats,” The Journal of Endocrinology, vol. 167, no. 3, pp. 533–539, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Y. H. Lu and W. Levin, “Partial purification of cytochromes P-450 and P-448 from rat liver microsomes,” Biochemical and Biophysical Research Communications, vol. 46, no. 3, pp. 1334–1339, 1972. View at Scopus
  31. S. Mundt, K. Solly, R. Thieringer, and A. Hermanowski-Vosatka, “Development and application of a scintillation proximity assay (SPA) for identification of selectiive inhibitors of 11β-hydroxysteroid dehydrogenase type 1,” Assay and Drug Development Technologies, vol. 3, no. 4, pp. 367–375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Solly, S. S. Mundt, H. J. Zokian et al., “High-throughput screening of 11β-hydroxysteroid dehydrogenase type 1 scintillation proximity assay format,” Assay and Drug Development Technologies, vol. 3, no. 4, pp. 377–384, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. B. R. Walker, R. Best, C. H. L. Shackleton, P. L. Padfield, and C. R. W. Edwards, “Increased vasoconstrictor sensitivity to glucocorticoids in essential hypertension,” Hypertension, vol. 27, no. 2, pp. 190–196, 1996. View at Scopus
  34. A. Soro, M. C. Ingram, G. Tonolo, N. Glorioso, and R. Fraser, “Evidence of coexisting changes in 11β-hydroxysteroid dehydrogenase and 5β-reductase activity in subjects with untreated essential hypertension,” Hypertension, vol. 25, no. 1, pp. 67–70, 1995. View at Scopus
  35. B. R. Walker, P. M. Stewart, C. H. L. Shackleton, P. L. Padfield, and C. R. W. Edwards, “Deficient inactivation of cortisol by 11β-hydroxysteroid dehydrogenase in essential hypertension,” Clinical Endocrinology, vol. 39, no. 2, pp. 221–227, 1993. View at Scopus
  36. C. Campino, C. A. Carvajal, J. Cornejo et al., “11β-hydroxysteroid dehydrogenase type-2 and type-1 (11β-HSD2 and 11β-HSD1) and 5β-reductase activities in the pathogenia of essential hypertension,” Endocrine, vol. 37, no. 1, pp. 106–114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. B. R. Walker, D. I. W. Phillips, J. P. Noon et al., “Increased glucocorticoid activity in men with cardiovascular risk factors,” Hypertension, vol. 31, no. 4, pp. 891–895, 1998. View at Scopus
  38. S. Kidambi, J. M. Kotchen, C. E. Grim, et al., “Association of adrenal steroids with hypertension and the metabolic syndrome in blacks,” Hypertension, vol. 49, no. 3, pp. 704–711, 2007. View at Scopus
  39. C. G. Schnackenberg, “11β-hydroxysteroid dehydrogenase type 1 inhibitors for metabolic syndrome,” Current Opinion in Investigational Drugs, vol. 9, no. 3, pp. 295–300, 2008. View at Scopus
  40. X. Hu and C. W. Bolten, “Adrenal corticosteroids, their receptors and hypertension,” Drug Development Research, vol. 67, no. 12, pp. 871–883, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. P. W. F. Hadoke, L. Macdonald, J. J. Logie, G. R. Small, A. R. Dover, and B. R. Walker, “Intra-vascular glucocorticoid metabolism as a modulator of vascular structure and function,” Cellular and Molecular Life Sciences, vol. 63, no. 5, pp. 565–578, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. S. J. Y. Wang, S. Birtles, J. de Schoolmeester et al., “Inhibition of 11β-hydroxysteroid dehydrogenase type 1 reduces food intake and weight gain but maintains energy expenditure in diet-induced obese mice,” Diabetologia, vol. 49, no. 6, pp. 1333–1337, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. J. E. Hall, M. W. Brands, D. H. Zappe, and M. A. Galicia, “Insulin resistance, hyperinsulinemia, and hypertension: causes, consequences, or merely correlations?” Proceedings of the Society for Experimental Biology and Medicine, vol. 208, no. 4, pp. 317–329, 1995. View at Scopus
  44. C. Klett, D. Ganten, W. Hellmann et al., “Regulation of hepatic angiotensinogen synthesis and secretion by steroid hormones,” Endocrinology, vol. 130, no. 6, pp. 3660–3668, 1992. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Sato, H. Suzuki, M. Murakami, Y. Nakazato, Y. Iwaita, and T. Saruta, “Glucocorticoid increases angiotensin II type 1 receptor and its gene expression,” Hypertension, vol. 23, no. 1, pp. 25–30, 1994. View at Scopus
  46. M. Nangaku, T. Miyata, T. Sada et al., “Anti-hypertensive agents inhibit in vivo the formation of advanced glycation end products and improve renal damage in a type 2 diabetic nephropathy rat model,” Journal of the American Society of Nephrology, vol. 14, no. 5, pp. 1212–1222, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Nagase, S. Yoshida, S. Shibata et al., “Enhanced aldosterone signaling in the early nephropathy of rats with metabolic syndrome: possible contribution of fat-derived factors,” Journal of the American Society of Nephrology, vol. 17, no. 12, pp. 3438–3446, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. M. L. Gross, E. Ritz, A. Schoof et al., “Renal damage in the SHR/N-cp type 2 diabetes model: comparison of an angiotensin-converting enzyme inhibitor and endothelin receptor blocker,” Laboratory Investigation, vol. 83, no. 9, pp. 1267–1277, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Yamaguchi, K. Yamada, N. Yoshikawa, K. Nakamura, J. Haginaka, and M. Kunitomo, “Corosolic acid prevents oxidative stress, inflammation and hypertension in SHR/NDmcr-cp rats, a model of metabolic syndrome,” Life Sciences, vol. 79, no. 26, pp. 2474–2479, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. G. Hussein, T. Nakagawa, H. Goto et al., “Astaxanthin ameliorates features of metabolic syndrome in SHR/NDmcr-cp,” Life Sciences, vol. 80, no. 6, pp. 522–529, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. K. Obunai, S. Jani, and G. D. Dangas, “Cardiovascular morbidity and mortality of the metabolic syndrome,” Medical Clinics of North America, vol. 91, no. 6, pp. 1169–1184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Ferrannini, G. Buzzigoli, and R. Bonadonna, “Insulin resistance in essential hypertension,” The New England Journal of Medicine, vol. 317, no. 6, pp. 350–357, 1987. View at Scopus
  53. A. L. M. Swislocki, B. B. Hoffman, and G. M. Reaven, “Insulin resistance, glucose intolerance and hyperinsulinemia in patients with hypertension,” American Journal of Hypertension, vol. 2, no. 6, pp. 419–423, 1989. View at Scopus
  54. I. Zavaroni, S. Mazza, E. Dall'Aglio, P. Gasparini, M. Passeri, and G. M. Reaven, “Prevalence of hyperinsulinaemia in patients with high blood pressure,” Journal of Internal Medicine, vol. 231, no. 3, pp. 235–240, 1992. View at Scopus