About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 430791, 9 pages
http://dx.doi.org/10.1155/2013/430791
Research Article

The Protective Effect of Fasudil on the Structure and Function of Cardiac Mitochondria from Rats with Type 2 Diabetes Induced by Streptozotocin with a High-Fat Diet Is Mediated by the Attenuation of Oxidative Stress

Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yan Chang Zhong Road, Shanghai 200072, China

Received 19 February 2013; Revised 25 April 2013; Accepted 29 April 2013

Academic Editor: Michael Cunningham

Copyright © 2013 Rong Guo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. M. McBride, M. Neuspiel, and S. Wasiak, “Mitochondria: more than just a powerhouse,” Current Biology, vol. 16, no. 14, pp. R551–R560, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. E. J. Lesnefsky, S. Moghaddas, B. Tandler, J. Kerner, and C. L. Hoppel, “Mitochondrial dysfunction in cardiac disease: ischemia—reperfusion, aging, and heart failure,” Journal of Molecular and Cellular Cardiology, vol. 33, no. 6, pp. 1065–1089, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. A. M. Walters, G. A. Porter Jr., and P. S. Brookes, “Mitochondria as a drug target in ischemic heart disease and cardiomyopathy,” Circulation Research, vol. 111, no. 9, pp. 1222–1236, 2012.
  4. G. X. Shen, “Mitochondrial dysfunction, oxidative stress and diabetic cardiovascular disorders,” Cardiovascular & Hematological Disorders—Drug Targets, vol. 12, no. 2, pp. 106–112, 2012.
  5. G. X. Shen, “Oxidative stress and diabetic cardiovascular disorders: roles of mitochondria and NADPH oxidase,” Canadian Journal of Physiology and Pharmacology, vol. 88, no. 3, pp. 241–248, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Xie, S. R. Chowdhury, G. Sangle, and G. X. Shen, “Impact of diabetes-associated lipoproteins on oxygen consumption and mitochondrial enzymes in porcine aortic endothelial cells,” Acta Biochimica Polonica, vol. 57, no. 4, pp. 393–398, 2010. View at Scopus
  7. R. Arita, Y. Hata, S. Nakao et al., “Rho kinase inhibition by fasudil ameliorates diabetes-induced microvascular damage,” Diabetes, vol. 58, no. 1, pp. 215–226, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. S. J. Guan, Z. H. Ma, Y. L. Wu, et al., “Long-term administration of fasudil improves cardiomyopathy in streptozotocin-induced diabetic rats,” Food and Chemical Toxicology, vol. 50, no. 6, pp. 1874–1882, 2012.
  9. H. Zhou, Y. J. Li, M. Wang, et al., “Involvement of RhoA/ROCK in myocardial fibrosis in a rat model of type 2 diabetes,” Acta Pharmacologica Sinica, vol. 32, no. 8, pp. 999–1008, 2011.
  10. I. Kizub, O. Pavlova, C. Johnson, A. Soloviev, and A. Zholos, “Rho kinase and protein kinase C involvement in vascular smooth muscle myofilament calcium sensitization in arteries from diabetic rats,” British Journal of Pharmacology, vol. 159, no. 8, pp. 1724–1731, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. L. A. Bach, “Rho kinase inhibition: a new approach for treating diabetic nephropathy?” Diabetes, vol. 57, no. 3, pp. 532–533, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Komers, “Rho kinase inhibition in diabetic nephropathy,” Current Opinion in Nephrology and Hypertension, vol. 20, no. 1, pp. 77–83, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Ishida, Y. Takanashi, and H. Kiwada, “Safe and efficient drug delivery system with liposomes for intrathecal application of an antivasospastic drug, fasudil,” Biological and Pharmaceutical Bulletin, vol. 29, no. 3, pp. 397–402, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Omeis, N. A. Jayson, R. Murali, and J. M. Abrahams, “Treatment of cerebral vasospasm with biocompatible controlled-release systems for intracranial drug delivery,” Neurosurgery, vol. 63, no. 6, pp. 1011–1019, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. F. Olson, “Applications for ROCK kinase inhibition,” Current Opinion in Cell Biology, vol. 20, no. 2, pp. 242–248, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Suzuki, M. Shibuya, S. I. Satoh, Y. Sugimoto, and K. Takakura, “A postmarketing surveillance study of fasudil treatment after aneurysmal subarachnoid hemorrhage,” Surgical Neurology, vol. 68, no. 2, pp. 126–131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. J. Reed, K. Meszaros, L. J. Entes et al., “A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat,” Metabolism: Clinical and Experimental, vol. 49, no. 11, pp. 1390–1394, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. C. P. Baines, C. X. Song, Y. T. Zheng et al., “Protein kinase Cε interacts with and inhibits the permeability transition pore in cardiac mitochondria,” Circulation Research, vol. 92, no. 8, pp. 873–880, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Javadov, M. Karmazyn, and N. Escobales, “Mitochondrial permeability transition pore opening as a promising therapeutic target in cardiac diseases,” Journal of Pharmacology and Experimental Therapeutics, vol. 330, no. 3, pp. 670–678, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. Q. Gao, S. Z. Zhang, C. M. Cao, I. C. Bruce, and Q. Xia, “The mitochondrial permeability transition pore and the Ca 2+-activated K + channel contribute to the cardioprotection conferred by tumor necrosis factor-α,” Cytokine, vol. 32, no. 5, pp. 199–205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Li, W. Peng, W. Jian, et al., “ROCK inhibitor fasudil attenuated high glucose-induced MCP-1 and VCAM-1 expression and monocyte-endothelial cell adhesion,” Cardiovascular Diabetology, vol. 11, p. 65, 2012.
  22. L. H. Opie, “Substrate utilization and glycolysis in the heart,” Cardiology, vol. 56, no. 1, pp. 2–21, 1971. View at Scopus
  23. J. M. Huss and D. P. Kelly, “Mitochondrial energy metabolism in heart failure: a question of balance,” The Journal of Clinical Investigation, vol. 115, no. 3, pp. 547–555, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Piarulli, G. Sartore, and A. Lapolla, “Glyco-oxidation and cardiovascular complications in type 2 diabetes: a clinical update,” Acta Diabetologica, vol. 50, no. 2, pp. 101–110, 2012. View at Publisher · View at Google Scholar
  25. D. X. Zhang and D. D. Gutterman, “Mitochondrial reactive oxygen species-mediated signaling in endothelial cells,” American Journal of Physiology, vol. 292, no. 5, pp. H2023–H2031, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Giacco and M. Brownlee, “Oxidative stress and diabetic complications,” Circulation Research, vol. 107, no. 9, pp. 1058–1070, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Folli, D. Corradi, P. Fanti, et al., “The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: avenues for a mechanistic-based therapeutic approach,” Current Diabetes Reviews, vol. 7, no. 5, pp. 313–324, 2011.
  28. B. B. Lowell and G. I. Shulman, “Mitochondrial dysfunction and type 2 diabetes,” Science, vol. 307, no. 5708, pp. 384–387, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Di Lisa, N. Kaludercic, A. Carpi, R. Menabò, and M. Giorgio, “Mitochondrial pathways for ROS formation and myocardial injury: the relevance of p66Shc and monoamine oxidase,” Basic Research in Cardiology, vol. 104, no. 2, pp. 131–139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Di Lisa, N. Kaludercic, A. Carpi, R. Menabò, and M. Giorgio, “Mitochondria and vascular pathology,” Pharmacological Reports, vol. 61, no. 1, pp. 123–130, 2009. View at Scopus
  31. A. P. Halestrap, S. J. Clarke, and S. A. Javadov, “Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection,” Cardiovascular Research, vol. 61, no. 3, pp. 372–385, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. J. N. Weiss, P. Korge, H. M. Honda, and P. Ping, “Role of the mitochondrial permeability transition in myocardial disease,” Circulation Research, vol. 93, no. 4, pp. 292–301, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Higashi, H. Shimokawa, T. Hattori et al., “Long-term inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo: effect on endothelial NAD(P)H oxidase system,” Circulation Research, vol. 93, no. 8, pp. 767–775, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. Z. Ma, J. Zhang, E. Ji, G. Cao, G. Li, and L. Chu, “Rho kinase inhibition by fasudil exerts antioxidant effects in hypercholesterolemic rats,” Clinical and Experimental Pharmacology and Physiology, vol. 38, no. 10, pp. 688–694, 2011.