About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 432375, 13 pages
http://dx.doi.org/10.1155/2013/432375
Review Article

A Review for Detecting Gene-Gene Interactions Using Machine Learning Methods in Genetic Epidemiology

Artificial Intelligence and Bioinformatics Research Group, Faculty of Computing, Universiti Teknologi Malaysia, Skudai, 81310 Johor, Malaysia

Received 17 July 2013; Revised 26 August 2013; Accepted 27 August 2013

Academic Editor: Jielin Sun

Copyright © 2013 Ching Lee Koo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Sharan, “Analysis of Biological Networks: Genetic Interaction Networks, 1-38 [PDF file],” 2007http://www.cs.tau.ac.il/~roded/courses/bnet-a06/lec12.pdf.
  2. N. J. Nilsson, Artificial Intelligence: A New Synthesis, 1998.
  3. B. A. McKinney, D. M. Reif, M. D. Ritchie, and J. H. Moore, “Machine learning for detecting gene-gene interactions: a review,” Applied Bioinformatics, vol. 5, no. 2, pp. 77–88, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. N. E. Hardison and A. A. Motsinger-Reif, “The power of quantitative grammatical evolution neural networks to detect gene-gene interactions,” in Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation (GECCO '11), pp. 299–306, July 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. I. A. Basheer and M. Hajmeer, “Artificial neural networks: fundamentals, computing, design, and application,” Journal of Microbiological Methods, vol. 43, no. 1, pp. 3–31, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. L. C. Tsilo, Protein secondary structure prediction using neural networks and support vector machines [M.S. thesis], Rhodes University, Grahamstown, South Africa, 2008.
  7. A. A. Motsinger-Reif and M. D. Ritchie, “Neural networks for genetic epidemiology: past, present, and future,” BioData Mining, vol. 1, pp. 1–15, 2008. View at Publisher · View at Google Scholar
  8. D. Curtis, “Comparison of artificial neural network analysis with other multimarker methods for detecting genetic association,” BMC Genetics, vol. 8, p. 49, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Curtis, B. V. North, and P. C. Sham, “Use of an artificial neural network to detect association between a disease and multiple marker genotypes,” Annals of Human Genetics, no. 1, pp. 95–107, 2001. View at Scopus
  10. M. D. Ritchie, C. S. Coffey, and J. H. Moore, “Genetic programming neural networks as a bioinformatics tool for human genetics,” in Genetic and Evolutionary Computation, G. Raidl, R. Poli, W. Banzhaf, et al., Eds., vol. 3102 of Lecture Notes in Computer Science, pp. 438–448, Springer, Berlin, Germany, 2004.
  11. M. D. Ritchie, B. C. White, J. S. Parker, L. W. Hahn, and J. H. Moore, “Optimization of neural network architecture using genetic programming improves detection and modelling of gene-gene interactions in studies of human diseases,” BMC Bioinformatics, vol. 4, p. 28, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Tomita, S. Tomida, Y. Hasegawa et al., “Artificial neural network approach for selection of susceptible single nucleotide polymorphisms and construction of prediction model on childhood allergic asthma,” BMC Bioinformatics, vol. 5, p. 120, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Keedwell and A. Narayanan, “Discovering gene networks with a neural-genetic hybrid,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 2, no. 3, pp. 231–242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. A. Motsinger, S. L. Lee, G. Mellick, and M. D. Ritchie, “GPNN: power studies and applications of a neural network method for detecting gene-gene interactions in studies of human disease,” BMC Bioinformatics, vol. 7, p. 39, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. M. D. Ritchie, A. A. Motsinger, W. S. Bush, C. S. Coffey, and J. H. Moore, “Genetic programming neural networks: a powerful bioinformatics tool for human genetics,” Applied Soft Computing Journal, vol. 7, no. 1, pp. 471–479, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. A. A. Motsinger-Reif, T. J. Fanelli, A. C. Davis, and M. D. Ritchie, “Power of grammatical evolution neural networks to detect gene-gene interactions in the presence of error,” BMC Research Notes, vol. 1, p. 65, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Günther, N. Wawro, and K. Bammann, “Neural networks for modeling gene-gene interactions in association studies,” BMC Genetics, vol. 10, p. 87, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. D. Turner, S. M. Dudek, and M. D. Ritchie, “ATHENA: a knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci,” BioData Mining, vol. 3, no. 1, p. 5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Chen, J. Sun, L. Dimitrov et al., “A support vector machine approach for detecting gene-gene interaction,” Genetic Epidemiology, vol. 32, no. 2, pp. 152–167, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Barakat and A. P. Bradley, “Rule extraction from support vector machines: a review,” Neurocomputing, vol. 74, no. 1–3, pp. 178–190, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. P. V. Missiuro, Predicting genetic interactions in Caenorhabditiselegans using machine learning [Ph.D. thesis], Massachusetts Institute of Technology, Cambridge, Mass, USA, 2010.
  22. C. Hsu, C. Chang, and C. Lin, “A Practical Guide to Support Vector Classification, 1-16, Retrieved from,” 2010, http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.
  23. N. Matchenko-Shimko and M. P. Dubé, “Gene-gene interaction tests using SVM and neural network modeling,” in Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, pp. 90–97, September 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Özgür, T. Vu, G. Erkan, and D. R. Radev, “Identifying gene-disease associations using centrality on a literature mined gene-interaction network,” Bioinformatics, vol. 24, no. 13, pp. i277–i285, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Shen, Z. Liu, and J. Ott, “Detecting gene-gene interactions using support vector machines with L 1 penalty,” in Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW '10), pp. 309–311, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Ban, J. Y. Heo, K. Oh, and K. Park, “Identification of Type 2 Diabetes-associated combination of SNPs using Support Vector Machine,” BMC Genetics, vol. 11, p. 26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Fang and Y. Chiu, “SVM-based generalized multifactor dimensionality reduction approaches for detecting gene-gene interactions in family studies,” Genetic Epidemiology, vol. 36, no. 2, pp. 88–98, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Zhang, H. Wang, Z. Dai, M. Chen, and Z. Yuan, “Improving accuracy for cancer classification with a new algorithm for genes selection,” BMC Bioinformatics, vol. 13, pp. 1–20, 2012. View at Publisher · View at Google Scholar
  29. S. Marvel and A. Motsinger-Reif, “Grammatical evolution support vector machines for predicting human genetic disease association,” in Proceedings of the 14th International Conference on Genetic and Evolutionary Computation Conference (GECCO '12), pp. 595–598, 2012.
  30. J. H. Moore, F. W. Asselbergs, and S. M. Williams, “Bioinformatics challenges for genome-wide association studies,” Bioinformatics, vol. 26, no. 4, Article ID btp713, pp. 445–455, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Upstill-Goddard, D. Eccles, J. Reige, and A. Collins, “Machine learning approaches for the discovery of gene-gene interactions in disease data,” Briefing in Bioinformatics, vol. 14, no. 2, p. 251, 2013.
  32. S. J. Winham, C. L. Colby, R. R. Freimuth et al., “SNP interaction detection with random forests in high-dimensional genetic data,” BMC Bioinformatics, vol. 13, p. 164, 2012. View at Publisher · View at Google Scholar
  33. K. L. Lunetta, L. B. Hayward, J. Segal, and P. van Eerdewegh, “Screening large-scale association study data: exploiting interactions using random forests,” BMC Genetics, vol. 5, p. 32, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Jiang, W. Tang, X. Wu, and W. Fu, “A random forest approach to the detection of epistatic interactions in case-control studies,” BMC Bioinformatics, vol. 10, supplement 1, p. S65, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. D. F. Schwarz, I. R. König, and A. Ziegler, “On safari to random Jungle: a fast implementation of random forests for high-dimensional data,” Bioinformatics, vol. 26, no. 14, Article ID btq257, pp. 1752–1758, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Y. Liu, H. H. Ackerman, and J. P. Carulli, “A genome-wide screen of gene-gene interactions for rheumatoid arthritis susceptibility,” Human Genetics, vol. 129, no. 5, pp. 473–485, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. Q. X. Pan, T. Hu, J. D. Malley, A. S. Andrew, M. R. Karagas, and J. H. Moore, “Supervising random forest using attribute interaction networks,” in Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, L. Vanneschi, W. S. Bush, and M. Giacobini, Eds., vol. 7833 of Lecture Notes in Computer Science, pp. 104–116, 2013.
  38. A. Staiano, M. D. Di Taranto, E. Bloise et al., “Investigation of single nucleotide polymorphisms associated to familial combined Hyperlipidemia with random forests,” in Neural Nets and Surroundingset, B. Apolloni, S. Bassis, A. Esposito, and F. C. Morabito, Eds., vol. 19, pp. 169–178, 2013.
  39. X. Chen and H. Ishwaran, “Pathway hunting by random survival forests,” Bioinformatics, vol. 29, no. 1, pp. 99–105, 2013. View at Publisher · View at Google Scholar
  40. S. K. Musani, D. Shriner, N. Liu et al., “Detection of gene x gene interactions in genome-wide association studies of human population data,” Human Heredity, vol. 63, no. 2, pp. 67–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. P. S. Wasan, M. Uttamchandani, S. Mochhala, V. B. Yap, and P. H. Yap, “Application of statistics and machine learning for risk stratification of heritable cardiac arrhythmias,” Expert Systems with Applications, vol. 40, no. 7, pp. 2476–2486, 2013.