About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 435818, 10 pages
http://dx.doi.org/10.1155/2013/435818
Research Article

Acid Lipase from Candida viswanathii: Production, Biochemical Properties, and Potential Application

1Environmental Studies Center, Universidade Estadual Paulista, CEA/UNESP, Avenida 24-A, 1515 Bela Vista, 13506-900 Rio Claro, SP, Brazil
2Biochemistry and Microbiology Department, Bioscience Institute, Universidade Estadual Paulista, IB/UNESP, Avenida 24-A, 1515 Bela Vista, 13506-900 Rio Claro, SP, Brazil

Received 25 July 2013; Accepted 8 October 2013

Academic Editor: S. L. Mowbray

Copyright © 2013 Alex Fernando de Almeida et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Influences of environmental variables and emulsifiers on lipase production of a Candida viswanathii strain were investigated. The highest lipase activity (101.1 U) was observed at 210 rpm, pH 6.0, and 27.5°C. Other fermentation parameters analyzed showed considerable rates of biomass yield (  g/g), lipase yield (  U/g), and biomass productivity (  g/h). Addition of soybean lecithin increased lipase production in 1.45-fold, presenting lipase yield ( ) of 10.061 U/g. Crude lipase presented optimal activity at acid pH of 3.5, suggesting a new lipolytic enzyme for this genus and yeast in general. In addition, crude lipase presented high stability in acid conditions and temperature between 40 and 45°C, after 24 h of incubation in these temperatures. Lipase remained active in the presence of organic solvents maintaining above 80% activity in DMSO, methanol, acetonitrile, ethanol, acetone, 1-propanol, isopropanol, and 2-propanol. Effectiveness for the hydrolysis of a wide range of natural triglycerides suggests that this new acid lipase has high potential application in the oleochemical and food industries for hydrolysis and/or modification of triacylglycerols to improve the nutritional properties.