About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 436932, 11 pages
http://dx.doi.org/10.1155/2013/436932
Research Article

Gelucire Based In Situ Gelling Emulsions: A Potential Carrier for Sustained Stomach Specific Delivery of Gastric Irritant Drugs

1Department of Pharmaceutics, College of Pharmacy, IFTM, Moradabad Uttar Pradesh 244001, India
2Bengal College of Pharmaceutical Science and Research, Durgapur, West Bengal, India
3Department of Pharmaceutics, Institute of Technology, Banaras Hindu University, Varanasi, India

Received 30 April 2013; Accepted 19 September 2013

Academic Editor: René Holm

Copyright © 2013 Ashwin Saxena et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Miyazaki, N. Kawasaki, W. Kubo, K. Endo, and D. Attwood, “Comparison of in situ gelling formulations for the oral delivery of cimetidine,” International Journal of Pharmaceutics, vol. 220, no. 1-2, pp. 161–168, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Kubo, S. Miyazaki, and D. Attwood, “Oral sustained delivery of paracetamol from in situ-gelling gellan and sodium alginate formulations,” International Journal of Pharmaceutics, vol. 258, no. 1-2, pp. 55–64, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Prabaharan and J. F. Mano, “Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials,” Macromolecular Bioscience, vol. 6, no. 12, pp. 991–1008, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Sophie, V. Tomme, G. Storm, and E. Wim Hennink, “In situ gelling hydrogels for pharmaceutical and biomedical applications,” International Journal of Pharmaceutics, vol. 355, no. 1-2, pp. 1–18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. G. M. El Maghraby, E. M. Elzayat, and F. K. Alanazi, “Development of modified in situ gelling oral liquid sustained release formulation for dextromethorphan,” Drug Development and Industrial Pharmacy, vol. 38, no. 8, pp. 971–978, 2012.
  6. S. Ganguly and A. K. Dash, “A novel in situ gel for sustained drug delivery and targeting,” International Journal of Pharmaceutics, vol. 276, no. 1-2, pp. 83–92, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Engstrom, L. Lindahl, R. Wallin, and J. Engblom, “A study of polar lipid drug carrier systems undergoing a thermoreversible lamellar-to-cubic phase transition,” International Journal of Pharmaceutics, vol. 86, no. 2-3, pp. 137–145, 1992. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Mirghani, N. M. Idkaidek, M. S. Salem, and N. M. Najib, “Formulation and release behavior of diclofenac sodium in Compritol 888 matrix beads encapsulated in alginate,” Drug Development and Industrial Pharmacy, vol. 26, no. 7, pp. 791–795, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. M.-S. Kim, G.-D. Park, S.-W. Jun, S. Lee, J.-S. Park, and S.-J. Hwang, “Controlled release tamsulosin hydrochloride from alginate beads with waxy materials,” Journal of Pharmacy and Pharmacology, vol. 57, no. 12, pp. 1521–1528, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Pongjanyakul, S. Sungthongjeen, and S. Puttipipatkhachorn, “Modulation of drug release from glyceryl palmitostearate-alginate beads via heat treatment,” International Journal of Pharmaceutics, vol. 319, no. 1-2, pp. 20–28, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Al-Taani, M. S. Khanfar, M. S. Salem, and A. Sallam, “Release behaviour of diclofenac sodium dispersed in Gelucire and encapsulated with alginate beads,” Journal of Microencapsulation, vol. 27, no. 1, pp. 10–13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Jauhari and A. K. Dash, “A mucoadhesive in situ gel delivery system for paclitaxel,” AAPS PharmSciTech, vol. 7, no. 2, article 53, 2006. View at Scopus
  13. W. Sutananta, D. Q. M. Craig, and J. M. Newton, “An evaluation of the mechanisms of drug release from glyceride bases,” Journal of Pharmacy and Pharmacology, vol. 47, no. 3, pp. 182–187, 1995. View at Scopus
  14. J. Castellsague, N. Riera-Guardia, B. Calingaert et al., “Individual NSAIDs and upper gastrointestinal complications: a systemic review and meta-analysis of observational studies (the SOS project),” Drug Safety, vol. 35, no. 12, pp. 1127–1146, 2012.
  15. R. C. Nagarwal, S. Kant, P. N. Singh, P. Maiti, and J. K. Pandit, “In situ forming formulation: development, evaluation, and optimization using 33 factorial design,” AAPS PharmSciTech, vol. 10, no. 3, pp. 977–984, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. D. W. A. Bourne, “Pharmacokinetics,” in Modern Pharmaceutics, G. S. Banker and C. T. Rhodes, Eds., pp. 67–92, Marcel Dekker, New York, NY, USA, 4th edition, 2002.
  17. T. HIGUCHI, “Rate of release of medicaments from ointment bases containing drugs in suspension,” Journal of Pharmaceutical Sciences, vol. 50, pp. 874–875, 1961. View at Scopus
  18. R. W. Korsmeyer, R. Gurny, E. Doelker, P. Buri, and N. A. Peppas, “Mechanisms of solute release from porous hydrophilic polymers,” International Journal of Pharmaceutics, vol. 15, no. 1, pp. 25–35, 1983. View at Publisher · View at Google Scholar · View at Scopus
  19. M. N. Ghosh, Evaluation of Analgesic Agents, Fundamentals of Experimental Pharmacology, Scientific Book Agency, Kolkata, India, 2nd edition, 1984.
  20. U. K. Sheth, N. K. Dadkar, and U. G. Kamt, Drugs Acting on CNS, Selected Topics in Experimental Pharmacology, Mohanlal. B. Kothari of the Kothari Book Depot, Mumbai, India, 1st edition, 1972.