About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 436979, 8 pages
http://dx.doi.org/10.1155/2013/436979
Research Article

Evaluation of Wall Correction Factor of INER's Air-Kerma Primary Standard Chamber and Dose Variation by Source Displacement for HDR 192Ir Brachytherapy

1Health Physics Division, Institute of Nuclear Energy Research, Longtan 325, Taiwan
2Department of Radiation Oncology, China Medical University Hospital, Taichung 404, Taiwan
3Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan

Received 12 May 2013; Accepted 28 May 2013

Academic Editor: Maria F. Chan

Copyright © 2013 J. H. Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Sander and R. F. Nutbrown, “The NPL air kerma primary standard TH100C for high dose rate 192Ir brachytherapy sources,” Tech. Rep. DQL-RD 004, Teddington National Physical Laboratory, 2006.
  2. D. Baltas, K. Geramani, G. T. Ioannidis et al., “Comparison of calibration procedures for 192Ir high-dose rate brachytherapy sources,” International Journal of Radiation Oncology Biology Physics, vol. 43, no. 3, pp. 653–661, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. ICRU, “Dose and volume specification for reporting intracavitary therapy in gynecology,” ICRU Report 38, 1985.
  4. ICRU, “Dose and volume specification for reporting interstitial therapy,” ICRU Report 58, 1997.
  5. L. Büermann, H.-M. Kramer, H. Schrader, and H.-J. Selbach, “Activity determination of 192Ir solid sources by ionization chamber measurements using calculated corrections for self-absorption,” Nuclear Instruments and Methods in Physics Research A, vol. 339, no. 1-2, pp. 369–376, 1994. View at Scopus
  6. E. van Dijk, I.-K. Kolkman-Deurloo, and P. M. G. Damen, “Determination of the reference air kerma rate for 192Ir brachytherapy sources and the related uncertainty,” Medical Physics, vol. 31, no. 10, pp. 2826–2833, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Piermattei, L. Azario, A. Fidanzio et al., “The wall correction factor for a spherical ionization chamber used in brachytherapy source calibration,” Physics in Medicine and Biology, vol. 48, no. 24, pp. 4091–4103, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. D. W. O. Rogers, A. F. Bielajew, and A. E. Nahum, “Ion chamber response and Awall correction factors in a 60Co beam by Monte Carlo simulation,” Physics in Medicine and Biology, vol. 30, no. 5, pp. 429–443, 1985. View at Publisher · View at Google Scholar · View at Scopus
  9. A. F. Bielajew, “Ionisation cavity theory: a formal derivation of perturbation factors for thick-walled ion chambers in photon beams,” Physics in Medicine and Biology, vol. 31, no. 2, pp. 161–170, 1986. View at Publisher · View at Google Scholar · View at Scopus
  10. A. F. Bielajew, “On the technique of extrapolation to obtain wall correction factors for ion chambers irradiated by photon beams,” Medical Physics, vol. 17, no. 4, pp. 583–587, 1990. View at Publisher · View at Google Scholar · View at Scopus
  11. D. W. O. Rogers and A. F. Bielajew, “Wall attenuation and scatter corrections for ion chambers: Measurements versus calculations,” Physics in Medicine and Biology, vol. 35, no. 8, pp. 1065–1078, 1990. View at Publisher · View at Google Scholar · View at Scopus
  12. D. W. O. Rogers and J. Treurniet, “Monte Carlo calculated wall and axial non-uniformity corrections for primary standards,” Tech. Rep. PIRS-633, National Research Council of Canada, Ottawa, Canada, 1999.
  13. A. Angelopoulos, P. Baras, L. Sakelliou, P. Karaiskos, and P. Sandilos, “Monte Carlo dosimetry of a new 192Ir high dose rate brachytherapy source,” Medical Physics, vol. 27, no. 11, pp. 2521–2527, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Ballester, J. Pérez-Calatayud, V. Puchades et al., “Monte Carlo dosimetry of the Buchler high dose rate 192Ir source,” Physics in Medicine and Biology, vol. 46, no. 3, pp. N79–N90, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Papagiannis, A. Angelopoulos, E. Pantelis et al., “Dosimetry comparison of 192Ir sources,” Medical Physics, vol. 29, no. 10, pp. 2239–2246, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Douysset, T. Sander, J. Gouriou, and R. Nutbrown, “Comparison of air kerma standards of LNE-LNHB and NPL for 192Ir HDR brachytherapy sources: EUROMET project no 814,” Physics in Medicine and Biology, vol. 53, no. 6, pp. N85–N97, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. S. J. Goetsch, F. H. Attix, D. W. Pearson, and B. R. Thomadsen, “Calibration of 192Ir high-dose-rate afterloading systems,” Medical Physics, vol. 18, no. 3, pp. 462–467, 1991. View at Publisher · View at Google Scholar · View at Scopus
  18. ICRU, “Stopping powers for electrons and positrons,” ICRU Report 37, 1984.
  19. D. W. O. Rogers, I. Kawrakow, J. P. Seuntjens, et al., “NRC user codes for EGSnrc,” NRCC Report PIRS-702(revB), 2005.
  20. X-5 Monte Carlo team, MCNP-A General Monte Carlo N-Particle Transport Code, version 5, Los Alamos National Laboratory, Los Alamos, NM, USA, 2003.
  21. D. W. O. Rogers and J. Borg, “Spectra and air-kerma strength for encapsulated 192Ir sources,” Medical Physics, vol. 26, no. 11, pp. 2441–2444, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. S. M. Seltzer and P. M. Bergstrom, “Changes in the U.S. primary standards for the air kerma from gamma-ray beams,” Journal of Research of the National Institute of Standards and Technology, vol. 108, no. 5, pp. 359–381, 2003. View at Scopus