About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 458253, 15 pages
http://dx.doi.org/10.1155/2013/458253
Review Article

Development of Composite Scaffolds for Load-Bearing Segmental Bone Defects

Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA

Received 1 May 2013; Accepted 2 July 2013

Academic Editor: Aijun Wang

Copyright © 2013 Marcello Pilia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. H. K. Xu, M. D. Weir, and C. G. Simon, “Injectable and strong nano-apatite scaffolds for cell/growth factor delivery and bone regeneration,” Dental Materials, vol. 24, no. 9, pp. 1212–1222, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Praemer, S. Furner, and D. P. Rice, Musculoskeletal Conditions in the United Statesed, American Academy of Orthopaedic Surgeons, Park Ridge, Ill, USA, 1st edition, 1999.
  3. A. M. Ambrosio, J. S. Sahota, Y. Khan, and C. T. Laurencin, “A novel amorphous calcium phosphate polymer ceramic for bone repair: I. Synthesis and characterization,” Journal of Biomedical Materials Research, vol. 58, pp. 295–301, 2001.
  4. C. T. Laurencin, A. M. A. Ambrosio, M. D. Borden, and J. A. Cooper Jr., “Tissue engineering: orthopedic applications,” Annual Review of Biomedical Engineering, no. 1, pp. 19–46, 1999. View at Scopus
  5. H. Chim, D. W. Hutmacher, A. M. Chou et al., “A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering,” International Journal of Oral and Maxillofacial Surgery, vol. 35, no. 10, pp. 928–934, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Gibson, M. M. Savalani, C. X. Lam et al., “Towards a medium/high load-bearing scaffold fabrication system,” Tsinghua Science and Technology, vol. 14, supplement 1, pp. 13–19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. H. An, Internal Fixation in Osteoporotic Bone, Thieme Medical, New York, NY, USA, 2002.
  8. Y. Yang, Y. Zhao, G. Tang, H. Li, X. Yuan, and Y. Fan, “In vitro degradation of porous poly(l-lactide-co-glycolide)/β-tricalcium phosphate (PLGA/β-TCP) scaffolds under dynamic and static conditions,” Polymer Degradation and Stability, vol. 93, no. 10, pp. 1838–1845, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Yang, J. G. C. Wolke, and J. A. Jansen, “Biomimetic calcium phosphate coating on electrospun poly(ε-caprolactone) scaffolds for bone tissue engineering,” Chemical Engineering Journal, vol. 137, no. 1, pp. 154–161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. L. L. Hench and J. M. Polak, “Third-generation biomedical materials,” Science, vol. 295, no. 5557, pp. 1014–1017, 2002. View at Scopus
  11. B. D. Owens, J. F. Kragh Jr., J. C. Wenke, J. Macaitis, C. E. Wade, and J. B. Holcomb, “Combat wounds in operation iraqi freedom and operation enduring freedom,” Journal of Trauma, vol. 64, no. 2, pp. 295–299, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. D. I. Devore, T. J. Walters, R. J. Christy et al., “For combat wounded: extremity trauma therapies from the USAISR,” Military Medicine, vol. 176, no. 6, pp. 660–663, 2011. View at Scopus
  13. B. D. Owens, J. F. Kragh Jr., J. Macaitis, S. J. Svoboda, and J. C. Wenke, “Characterization of extremity wounds in operation Iraqi freedom and operation enduring freedom,” Journal of Orthopaedic Trauma, vol. 21, no. 4, pp. 254–257, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. F. Brandoff, J. S. Silber, and A. R. Vaccaro, “Contemporary alternatives to synthetic bone grafts for spine surgery,” American Journal of Orthopedics, vol. 37, no. 8, pp. 410–414, 2008. View at Scopus
  15. P. Buma, W. Schreurs, and N. Verdonschot, “Skeletal tissue engineering—from in vitro studies to large animal models,” Biomaterials, vol. 25, no. 9, pp. 1487–1495, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. C. M. Cowan, C. Soo, K. Ting, and B. Wu, “Evolving concepts in bone tissue engineering,” Current Topics in Developmental Biology, vol. 66, pp. 239–285, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Drosse, E. Volkmer, R. Capanna, P. D. Biase, W. Mutschler, and M. Schieker, “Tissue engineering for bone defect healing: an update on a multi-component approach,” Injury, vol. 39, no. 2, pp. S9–S20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Z. LeGeros, “Properties of osteoconductive biomaterials: calcium phosphates,” Clinical Orthopaedics and Related Research, no. 395, pp. 81–98, 2002. View at Scopus
  19. A. S. Mistry and A. G. Mikos, “Tissue engineering strategies for bone regeneration,” Advances in Biochemical Engineering/Biotechnology, vol. 94, pp. 1–22, 2005. View at Scopus
  20. C. Weinand, I. Pomerantseva, C. M. Neville et al., “Hydrogel-β-TCP scaffolds and stem cells for tissue engineering bone,” Bone, vol. 38, no. 4, pp. 555–563, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. J. A. Puértolas, J. L. Vadillo, S. Sánchez-Salcedo, A. Nieto, E. Gómez-Barrena, and M. Vallet-Regí, “Compression behaviour of biphasic calcium phosphate and biphasic calcium phosphate-agarose scaffolds for bone regeneration,” Acta Biomaterialia, vol. 7, no. 2, pp. 841–847, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. Lu, S.-I. Roohani-Esfahani, G. Wang, and H. Zreiqat, “Bone biomimetic microenvironment induces osteogenic differentiation of adipose tissue-derived mesenchymal stem cells,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 8, no. 4, pp. 507–515, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Fan, L. Bi, T. Wu et al., “A combined chitosan/nano-size hydroxyapatite system for the controlled release of icariin,” Journal of Materials Science. Materials in Medicine, vol. 23, no. 2, pp. 399–407. View at Publisher · View at Google Scholar
  24. F. Baino, E. Verné, and C. Vitale-Brovarone, “3-D high-strength glass-ceramic scaffolds containing fluoroapatite for load-bearing bone portions replacement,” Materials Science and Engineering C, vol. 29, no. 6, pp. 2055–2062, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Xu, P. Su, X. Chen et al., “Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering,” Biomaterials, vol. 32, no. 4, pp. 1051–1058, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. S.-S. Kim, M. Sun Park, O. Jeon, C. Yong Choi, and B.-S. Kim, “Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 8, pp. 1399–1409, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Kang, A. Scully, D. A. Young et al., “Enhanced mechanical performance and biological evaluation of a PLGA coated β-TCP composite scaffold for load-bearing applications,” European Polymer Journal, vol. 47, no. 8, pp. 1569–1577, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Khadka, J. Li, Y. Li, Y. Gao, Y. Zuo, and Y. Ma, “Evaluation of hybrid porous biomimetic nano-hydroxyapatite/polyamide 6 and bone marrow-derived stem cell construct in repair of calvarial critical size defect,” Journal of Craniofacial Surgery, vol. 22, no. 5, pp. 1852–1858, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. J. M. Bouler, M. Trecant, J. Delecrin, J. Royer, N. Passuti, and G. Daculsi, “Macroporous biphasic calcium phosphate ceramics: influence of five synthesis parameters on compressive strength,” Journal of Biomedical Materials Research, vol. 32, pp. 603–609, 1996.
  30. S. Deville, E. Saiz, R. K. Nalla, and A. P. Tomsia, “Freezing as a path to build complex composites,” Science, vol. 311, no. 5760, pp. 515–518, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Deville, E. Saiz, and A. P. Tomsia, “Freeze casting of hydroxyapatite scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 32, pp. 5480–5489, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. U. Gbureck, T. Hölzel, C. J. Doillon, F. A. Müller, and J. E. Barralet, “Direct printing of bioceramic implants with spatially localized angiogenic factors,” Advanced Materials, vol. 19, no. 6, pp. 795–800, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. S. H. Li, J. R. De Wijn, P. Layrolle, and K. De Groot, “Synthesis of macroporous hydroxyapatite scaffolds for bone tissue engineering,” Journal of Biomedical Materials Research, vol. 61, no. 1, pp. 109–120, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. E. B. Montufar, T. Traykova, C. Gil et al., “Foamed surfactant solution as a template for self-setting injectable hydroxyapatite scaffolds for bone regeneration,” Acta Biomaterialia, vol. 6, no. 3, pp. 876–885, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. A. R. Studart, U. T. Gonzenbach, E. Tervoort, and L. J. Gauckler, “Processing routes to macroporous ceramics: a review,” Journal of the American Ceramic Society, vol. 89, no. 6, pp. 1771–1789, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Vitale-Brovarone, M. Miola, C. Balagna, and E. Verné, “3D-glass-ceramic scaffolds with antibacterial properties for bone grafting,” Chemical Engineering Journal, vol. 137, no. 1, pp. 129–136, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. D. J. Hak, “Management of aseptic tibial nonunion,” Journal of the American Academy of Orthopaedic Surgeons, vol. 19, no. 9, pp. 563–573, 2011. View at Scopus
  38. S.-I. Roohani-Esfahani, S. Nouri-Khorasani, Z. Lu, R. Appleyard, and H. Zreiqat, “The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites,” Biomaterials, vol. 31, no. 21, pp. 5498–5509, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Fabbri, V. Cannillo, A. Sola, A. Dorigato, and F. Chiellini, “Highly porous polycaprolactone-45S5 Bioglass scaffolds for bone tissue engineering,” Composites Science and Technology, vol. 70, no. 13, pp. 1869–1878, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. K. H. Tan, C. K. Chua, K. F. Leong et al., “Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends,” Biomaterials, vol. 24, no. 18, pp. 3115–3123, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. G. A. Helm, H. Dayoub, and J. A. Jane Jr., “Gene-based therapies for the induction of spinal fusion,” Neurosurgical Focus, vol. 10, no. 4, article E5, 2001. View at Scopus
  42. G. A. Helm, H. Dayoub, and J. A. Jane Jr., “Bone graft substitutes for the promotion of spinal arthrodesis,” Neurosurgical Focus, vol. 10, no. 4, article E4, 2001. View at Scopus
  43. C. E. Tanase, M. I. Popa, and L. Verestiuc, “Biomimetic bone scaffolds based on chitosan and calcium phosphates,” Materials Letters, vol. 65, no. 11, pp. 1681–1683, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Wang, Y. Li, Y. Zuo, J. Li, S. Ma, and L. Cheng, “Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering,” Biomaterials, vol. 28, no. 22, pp. 3338–3348, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. H. H. K. Xu, M. D. Weir, E. F. Burguera, and A. M. Fraser, “Injectable and macroporous calcium phosphate cement scaffold,” Biomaterials, vol. 27, no. 24, pp. 4279–4287, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Cao and N. Kuboyama, “A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering,” Bone, vol. 46, no. 2, pp. 386–395, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. W. E. Teo, S. Liao, C. Chan, and S. Ramakrishna, “Fabrication and characterization of hierarchically organized nanoparticle-reinforced nanofibrous composite scaffolds,” Acta Biomaterialia, vol. 7, no. 1, pp. 193–202, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Zhao, Y.-F. Tang, Y.-S. Qin, and J.-Q. Wei, “Porous hydroxyapatite ceramics by ice templating: freezing characteristics and mechanical properties,” Ceramics International, vol. 37, no. 2, pp. 635–639, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. H. R. R. Ramay and M. Zhang, “Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering,” Biomaterials, vol. 25, no. 21, pp. 5171–5180, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. E. Bernardo, P. Colombo, I. Cacciotti et al., “Porous wollastonite-hydroxyapatite bioceramics from a preceramic polymer and micro- or nano-sized fillers,” Journal of the European Ceramic Society, vol. 32, no. 2, pp. 399–408, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. N. D. Luong, I.-S. Moon, D. S. Lee, Y.-K. Lee, and J.-D. Nam, “Surface modification of poly(l-lactide) electrospun fibers with nanocrystal hydroxyapatite for engineered scaffold applications,” Materials Science and Engineering C, vol. 28, no. 8, pp. 1242–1249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Lerouxel, P. Weiss, B. Giumelli et al., “Injectable calcium phosphate scaffold and bone marrow graft for bone reconstruction in irradiated areas: an experimental study in rats,” Biomaterials, vol. 27, no. 26, pp. 4566–4572, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. L. Xiong, D. Xiong, Y. Yang, and J. Jin, “Friction, wear, and tensile properties of vacuum hot pressing crosslinked UHMWPE/nano-HAP composites,” Journal of Biomedical Materials Research B, vol. 98, no. 1, pp. 127–138, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. M. R. Urist, “Bone: formation by autoinduction,” Science, vol. 150, no. 3698, pp. 893–899, 1965. View at Scopus
  55. L. L. Hench, “Bioceramics: from concept to clinic,” Journal of the American Ceramic Society, vol. 74, pp. 1487–1510, 1991.
  56. L. L. Hench, R. J. Splinter, and W. C. Allen, “Bonding mechanisms at the interface of ceramic prosthetic materials,” Journal of Biomedical Materials Research, vol. 5, no. 6, pp. 117–141, 1972. View at Scopus
  57. J. F. Osborn and H. Newesely, “The material science of calcium phosphate ceramics,” Biomaterials, vol. 1, no. 2, pp. 108–111, 1980. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Dey, S. K. Nandi, B. Kundu et al., “Evaluation of hydroxyapatite and β-tri calcium phosphate microplasma spray coated pin intra-medullary for bone repair in a rabbit model,” Ceramics International, vol. 37, no. 4, pp. 1377–1391, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. R. J. Kane and R. K. Roeder, “Effects of hydroxyapatite reinforcement on the architecture and mechanical properties of freeze-dried collagen scaffolds,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 7, pp. 41–49, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Li, Y. Chen, Y. Yin, F. Yao, and K. Yao, “Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ,” Biomaterials, vol. 28, no. 5, pp. 781–790, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Y. Zhang, H. Lu, Z. Zhuang, X. P. Wang, and Q. F. Fang, “Nano-hydroxyapatite/poly(L-lactic acid) composite synthesized by a modified in situ precipitation: preparation and properties,” Journal of Materials Science: Materials in Medicine, vol. 21, no. 12, pp. 3077–3083, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. L. Bakhtiari, H. R. Rezaie, S. M. Hosseinalipour, and M. A. Shokrgozar, “Investigation of biphasic calcium phosphate/gelatin nanocomposite scaffolds as a bone tissue engineering,” Ceramics International, vol. 36, no. 8, pp. 2421–2426, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. C. Wu, Y. Zhang, Y. Zhu, T. Friis, and Y. Xiao, “Structure-property relationships of silk-modified mesoporous bioglass scaffolds,” Biomaterials, vol. 31, no. 13, pp. 3429–3438, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Asefnejad, A. Behnamghader, T. M. Khorasani, and B. Farsadzadeh, “Polyurethane/fluor-hydroxyapatite nanocomposite scaffolds for bone tissue engineering. part I: morphological, physical, and mechanical characterization,” International Journal of Nanomedicine, vol. 6, no. 1, pp. 93–100, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. G. Wei and P. X. Ma, “Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering,” Biomaterials, vol. 25, no. 19, pp. 4749–4757, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Bhumiratana, W. L. Grayson, A. Castaneda et al., “Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds,” Biomaterials, vol. 32, no. 11, pp. 2812–2820, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Polini, D. Pisignano, M. Parodi, R. Quarto, and S. Scaglione, “Osteoinduction of human mesenchymal stem cells by bioactive composite scaffolds without supplemental osteogenic growth factors,” PLoS One, vol. 6, no. 10, Article ID e26211, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. F. Yang, W. Cui, Z. Xiong, L. Liu, J. Bei, and S. Wang, “Poly(l,l-lactide-co-glycolide)/tricalcium phosphate composite scaffold and its various changes during degradation in vitro,” Polymer Degradation and Stability, vol. 91, no. 12, pp. 3065–3073, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. I. H. Kalfas, “Principles of bone healing,” Neurosurgical Focus, vol. 10, no. 4, article E1, 2001. View at Scopus
  70. C. B. Carter and M. G. Norton, Ceramic Materials: Science and Engineering, Springer, New York, NY, USA, 2007.
  71. K. Rezwan, Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini, “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 18, pp. 3413–3431, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. T.-M. G. Chu, S. J. Warden, C. H. Turner, and R. L. Stewart, “Segmental bone regeneration using a load-bearing biodegradable carrier of bone morphogenetic protein-2,” Biomaterials, vol. 28, no. 3, pp. 459–467, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. F. Jegoux, E. Aguado, R. Cognet et al., “Repairing segmental defect with a composite associating collagen membrane and MBCP combined with total bone marrow graft in irradiated bone defect: an experimental study in rabbit,” Key Engineering Materials, vol. 361-363, pp. 1245–1248, 2008. View at Scopus
  74. T. Guda, J. A. Walker, B. E. Pollot et al., “In vivo performance of bilayer hydroxyapatite scaffolds for bone tissue regeneration in the rabbit radius,” Journal of Materials Science: Materials in Medicine, vol. 22, no. 3, pp. 647–656, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. A. A. Ignatius, O. Betz, P. Augat, and L. E. Claes, “In vivo investigations on composites made of resorbable ceramics and poly(lactide) used as bone graft substitutes,” Journal of Biomedical Materials Research, vol. 58, no. 6, pp. 701–709, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Jayabalan, K. T. Shalumon, M. K. Mitha, K. Ganesan, and M. Epple, “Effect of hydroxyapatite on the biodegradation and biomechanical stability of polyester nanocomposites for orthopaedic applications,” Acta Biomaterialia, vol. 6, no. 3, pp. 763–775, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. D. Lickorish, L. Guan, and J. E. Davies, “A three-phase, fully resorbable, polyester/calcium phosphate scaffold for bone tissue engineering: evolution of scaffold design,” Biomaterials, vol. 28, no. 8, pp. 1495–1502, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. B. Rai, J. L. Lin, Z. X. H. Lim, R. E. Guldberg, D. W. Hutmacher, and S. M. Cool, “Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL-TCP scaffolds,” Biomaterials, vol. 31, no. 31, pp. 7960–7970, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. N. Barroca, A. L. Daniel-Da-Silva, P. M. Vilarinho, and M. H. V. Fernandes, “Tailoring the morphology of high molecular weight PLLA scaffolds through bioglass addition,” Acta Biomaterialia, vol. 6, no. 9, pp. 3611–3620, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. H. H. K. Xu and C. G. Simon Jr., “Self-hardening calcium phosphate composite scaffold for bone tissue engineering,” Journal of Orthopaedic Research, vol. 22, no. 3, pp. 535–543, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Yoshida, T. Miyazaki, E. Ishida, and M. Ashizuka, “Preparation of bioactive chitosan-hydroxyapatite nanocomposites for bone repair through mechanochemical reaction,” Materials Transactions, vol. 45, no. 4, pp. 994–998, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. Y. Huang, J. Ren, T. Ren et al., “Bone marrow stromal cells cultured on poly (lactide-co-glycolide)/nano-hydroxyapatite composites with chemical immobilization of Arg-Gly-Asp peptide and preliminary bone regeneration of mandibular defect thereof,” Journal of Biomedical Materials Research A, vol. 95, no. 4, pp. 993–1003, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. C. Choong, J. T. Triffitt, and Z. F. Cui, “Polycaprolactone scaffolds for bone tissue engineering: effects of a calcium phosphate coating layer on osteogenic cells,” Food and Bioproducts Processing, vol. 82, no. 2 C, pp. 117–125, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. M. D. Pierschbacher and E. Ruoslahti, “Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule,” Nature, vol. 309, no. 5963, pp. 30–33, 1984. View at Scopus
  85. J. M. Fernandez, M. S. Molinuevo, M. S. Cortizo, and A. M. Cortizo, “Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering,” Journal of Tissue Engineering and Regenerative Medicine, vol. 5, no. 6, pp. e126–e135, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. S. I. Roohani-Esfahani, Z. F. Lu, J. J. Li, R. Ellis-Behnke, D. L. Kaplan, and H. Zreiqat, “Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds,” Acta Biomaterialia, vol. 8, no. 1, pp. 302–312, 2012. View at Publisher · View at Google Scholar · View at Scopus
  87. J. Wei, J. Jia, F. Wu et al., “Hierarchically microporous/macroporous scaffold of magnesium-calcium phosphate for bone tissue regeneration,” Biomaterials, vol. 31, no. 6, pp. 1260–1269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. S.-C. Wu, H.-C. Hsu, S.-K. Hsu, W.-H. Wang, and W.-F. Ho, “Preparation and characterization of four different compositions of calcium phosphate scaffolds for bone tissue engineering,” Materials Characterization, vol. 62, no. 5, pp. 526–534, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. A. Torcasio, G. H. Van Lenthe, and H. Van Oosterwyck, “The importance of loading frequency, rate and vibration for enhancing bone adaptation and implant osseointegration,” European Cells and Materials, vol. 16, pp. 56–68, 2008. View at Scopus
  90. S. P. Nukavarapu, S. G. Kumbar, J. L. Brown et al., “Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering,” Biomacromolecules, vol. 9, no. 7, pp. 1818–1825, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Nemati Hayati, H. R. Rezaie, and S. M. Hosseinalipour, “Preparation of poly(3-hydroxybutyrate)/nano-hydroxyapatite composite scaffolds for bone tissue engineering,” Materials Letters, vol. 65, no. 4, pp. 736–739, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. S. K. Misra, T. I. Ansari, S. P. Valappil et al., “Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications,” Biomaterials, vol. 31, no. 10, pp. 2806–2815, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. Z.-L. Mou, L.-J. Zhao, Q.-A. Zhang, J. Zhang, and Z.-Q. Zhang, “Preparation of porous PLGA/HA/collagen scaffolds with supercritical CO2 and application in osteoblast cell culture,” Journal of Supercritical Fluids, vol. 58, no. 3, pp. 398–406, 2011. View at Publisher · View at Google Scholar · View at Scopus
  94. F. A. M. Pereira, J. J. L. Morais, N. Dourado, M. F. S. F. De Moura, and M. I. R. Dias, “Fracture characterization of bone under mode II loading using the end loaded split test,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 4, no. 8, pp. 1764–1773, 2011. View at Publisher · View at Google Scholar · View at Scopus
  95. H. Liu, L. Zhang, P. Shi, Q. Zou, Y. Zuo, and Y. Li, “Hydroxyapatite/polyurethane scaffold incorporated with drug-loaded ethyl cellulose microspheres for bone regeneration,” Journal of Biomedical Materials Research B, vol. 95, no. 1, pp. 36–46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. T. Guda, S. Oh, M. R. Appleford, and J. L. Ong, “Bilayer hydroxyapatite scaffolds for maxillofacial bone tissue engineering,” The International Journal of Oral & Maxillofacial Implants, vol. 27, pp. 288–294, 2012.
  97. J. C. Reichert, S. Saifzadeh, M. E. Wullschleger et al., “The challenge of establishing preclinical models for segmental bone defect research,” Biomaterials, vol. 30, no. 12, pp. 2149–2163, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. M. A. K. Liebschner, “Biomechanical considerations of animal models used in tissue engineering of bone,” Biomaterials, vol. 25, no. 9, pp. 1697–1714, 2004. View at Publisher · View at Google Scholar · View at Scopus