Review Article

Development of Composite Scaffolds for Load-Bearing Segmental Bone Defects

Table 7

Summary of the in vivo preclinical studies reviewed in which hybrid scaffolds were tested.
(a)

Author, yearCeramic materialPolymeric materialAnimal choiceAnatomical choiceLength of studyTime pointsSample sizeDefect sizeScaffold sizeControl

Cao and Kuboyama, 2010 [46]β-TCPPGASprague-Dawley ratsFemur; Medial epicondyle12 weeks0, 14, 30, and 90 days5/time points/group3 mm diameter; 2 mm depthN/A(+) HAp
(−) no implant

Chu et al., 2007 [72]TCPPPFLong Evans ratsFemur15 weeks6 and 15 weeks4 or 7/time point/group5 mmOD: 4 mm—ID: 2 mm; Height 5 mmNo BMP

Jegoux et al., 2008 [73]BCaPCollagenNew Zealand white rabbit and beagle dogsFemur18 weeks18 weeks6 rabbits, 6 dogs20 mm  mm

Guda et al., 2011 [74]HApNew Zealand white rabbitRadial diaphysis8 weeks4 and 8 weeks12/time point/group10 mm(+) autograft
(−) no implant

Ignatius et al., 2001 [75]β-TCPPLAMerino sheepTibia8 weeks6, 12, and 24 months6/time point/groupN/A24 mm length, 14 mm wide, 6 mm thick(+) TCP
(−) autograft

Jayabalan et al., 2010 [76]HApHT-PPFhmRabbitFemur48 weeks12, 24, and 48 weeks2/time point4 mm diameter; 2 mm depthN/A(−) no implant

Lickorish et al., 2007 [77]TTCP and DCPAPLGAWistar ratsFemur2 weeks2 weeksN/A2.3 mm diameter2 mm diameterPLGA
scaffold

Rai et al., 2010 [78]TCPPCLCBH/Rnu ratsFemur3 weeks3 weeks6/time point8 mm8 mm high, 4 mm diameter(−) non-seeded

Xu et al., 2011 [25]BioglassCollagen-phosphatidylserineSprague-Dawley ratsFemur6 weeks3 day, 3 and 6 weeks3/time point/group3.5 mm diameter;
4.5 mm diameter
N/ANo phosphatidylserine

(b)

Author, yearType of testingType of histologyHistological parameters analyzedμ-CT parameters analyzedMechanical testing

Cao and Kuboyama, 2010 [46]μ-CT, bone mineral density (new bone quantity), histology, and biodegradationDecalcified histologyArea of material in defect, new bone volume/total volume percent material biodegradationBone reformationNo

Chu et al., 2007 [72]Radiograph, μ-CT, and histologyMMC histologyNew bone formationCallus and scaffold volumetric bone mineral densityFour-point bending

Jegoux et al., 2008 [73]Polarized Light; μ-CT, SEMGlycol methacrylateUsed thick histology sections for observation under polerBioceramic, newly formed bone at the center, and superior and inferior quarter of the implantNo

Guda et al., 2011 [74]Radiograph, μ-CT, histologyMMC histologyMineralized bone, fibrous tissueBone regeneration patterns, bone density, bone growth profiles, and overall bone volumeFour-point bending

Ignatius et al., 2001 [75]Mechanical, histologyUndecalcified histologyNew bone formation, new soft tissue formation, remaining implant componentsNoCompression of  mm cubes

Jayabalan et al., 2010 [76]HistologyResin histologyForeign body giant cell, bone growthNoNo

Lickorish et al., 2007 [77]HistologyDecalcified histologyFibrous tissue formation, bone ingrowth, foreign body reactionNoNo

Rai et al., 2010 [78]Radiograph, μ-CT, histologyDecalcified histologyPresence of fibroblasts, chondrocytes, woven boneNew bone formationNo

Xu et al., 2011 [25]Histology; radiographyDecalcified histologyInflammatory reaction, new bone formation, scaffold resorptionNoNo