About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 459253, 8 pages
http://dx.doi.org/10.1155/2013/459253
Research Article

Sporadic Cerebral Cavernous Malformations: Report of Further Mutations of CCM Genes in 40 Italian Patients

1Department of Biomedical Sciences and Morphological and Functional Images, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via C. Valeria 1, 98125 Messina, Italy
2IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Palermo SS. 113, Contrada Casazza, 98122 Messina, Italy
3Department of Neurosciences, University of Messina, Via C. Valeria 1, 98125 Messina, Italy
4Biology and Cellular Biotechnologies, Department of Animal Biology and Marine Ecology, University of Messina, Salita Sperone 31, 98166 S. Agata, Messina, Italy
5Clinic of Neurosurgery, United Hospitals “Papardo-Piemonte”, Contrada Sperone, 98158 Messina, Italy

Received 17 April 2013; Revised 9 July 2013; Accepted 12 July 2013

Academic Editor: Michel Mittelbronn

Copyright © 2013 Rosalia D’Angelo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Rigamonti, M. N. Hadley, B. P. Drayer et al., “Cerebral cavernous malformation. Incidence and familial occurrence,” The New England Journal of Medicine, vol. 319, no. 6, pp. 343–347, 1989. View at Scopus
  2. R. E. Clatterbuck, C. G. Eberhart, B. J. Crain, and D. Rigamonti, “Ultrastructural and immunocytochemical evidence that an incompetent blood-brain barrier is related to the pathophysiology of cavernous malformations,” Journal of Neurology Neurosurgery and Psychiatry, vol. 71, no. 2, pp. 188–192, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Labauge, C. Denier, F. Bergametti, and E. Tournier-Lasserve, “Genetics of cavernous angiomas,” The Lancet Neurology, vol. 6, no. 3, pp. 237–244, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Revencu and M. Vikkula, “Cerebral cavernous malformation: new molecular and clinical insights,” Journal of Medical Genetics, vol. 43, no. 9, pp. 716–721, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Coban, C. Gurses, B. Bilgic et al., “Sporadic multiple cerebral cavernomatosis: report of a case and review of literature,” Neurologist, vol. 14, no. 1, pp. 46–49, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. L. Moriarity, M. Wetzel, R. E. Clatterbuck et al., “The natural history of cavernous malformations: a prospective study of 68 patients,” Neurosurgery, vol. 44, no. 6, pp. 1166–1171, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. C. W. Washington, K. E. McCoy, and G. J. Zipfel, “Update on the natural history of cavernous malformations and factors predicting aggressive clinical presentation,” Neurosurgical Focus, vol. 29, no. 3, p. E7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. R. D'Angelo, V. Marini, C. Rinaldi et al., “Mutation analysis of CCM1, CCM2 and CCM3 genes in a cohort of Italian patients with cerebral cavernous malformation,” Brain Pathology, vol. 21, no. 2, pp. 215–224, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. C. L. Liquori, M. J. Berg, A. M. Siegel et al., “Mutations in a gene encoding a novel protein containing a phosphotyrosinebinding domain cause type 2 cerebral cavernous malformations,” American Journal of Human Genetics, vol. 73, no. 6, pp. 1459–1464, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. J. S. Zawistowski, L. Stalheim, M. T. Uhlik et al., “CCM1 and CCM2 protein interactions in cell signaling: implications for cerebral cavernous malformations pathogenesis,” Human Molecular Genetics, vol. 14, no. 17, pp. 2521–2531, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Voss, S. Stahl, E. Schleider et al., “CCM3 interacts with CCM2 indicating common pathogenesis for cerebral cavernous malformations,” Neurogenetics, vol. 8, no. 4, pp. 249–256, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Wang, H. Liu, Y. Zhang, and D. Ma, “cDNA cloning and expression of an apoptosis-related gene, human TFAR15 gene,” Science in China C, vol. 42, no. 3, pp. 327–329, 1999. View at Scopus
  13. F. Piva, M. Giulietti, L. Nocchi, and G. Principato, “SpliceAid: a database of experimental RNA target motifs bound by splicing proteins in humans,” Bioinformatics, vol. 25, no. 9, pp. 1211–1213, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. W. G. Fairbrother, G. W. Yeo, R. Yeh et al., “RESCUE-ESE identifies candidate exonic splicing enhancers in vertebrate exons,” Nucleic Acids Research, vol. 32, pp. W187–W190, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. S. K. Singh, A. Vartanian, K. Burrell, and G. Zadeh, “A microRNA link to Glioblastoma heterogeneity,” Cancers, vol. 4, pp. 846–872, 2012.
  16. J. J. Liu, R. A. Stockton, A. R. Gingras et al., “A mechanism of Rap1-induced stabilization of endothelial cell-cell junctions,” Molecular Biology of the Cell, vol. 22, no. 14, pp. 2509–2519, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Wüstehube, A. Bartol, S. S. Liebler et al., “Cerebral cavernous malformation protein CCM1 inhibits sprouting angiogenesis by activating DELTA-NOTCH signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 28, pp. 12640–12645, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Harel, B. Costa, M. Tcherpakov et al., “CCM2 mediates death signaling by the TrkA receptor tyrosine kinase,” Neuron, vol. 10, no. 63, pp. 585–591, 2009. View at Scopus
  19. F. Cavé-Riant, C. Denier, P. Labauge et al., “Spectrum and expression analysis of KRIT1 mutations in 121 consecutive and unrelated patients with Cerebral Cavernous Malformations,” European Journal of Human Genetics, vol. 10, no. 11, pp. 733–740, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. R. D'Angelo, C. Scimone, C. Rinaldi et al., “CCM2 gene polymorphisms in Italian sporadic patients with cerebral cavernous malformation: a case-control study,” International Journal of Molecular Medicine, vol. 29, no. 6, pp. 1113–1120, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. A. L. Akers, E. Johnson, G. K. Steinberg, J. M. Zabramski, and D. A. Marchuk, “Biallelic somatic and germline mutations in cerebral cavernous malformations (CCMs): evidence for a two-hit mechanism of CCM pathogenesis,” Human Molecular Genetics, vol. 18, no. 5, pp. 919–930, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Denier, P. Labauge, F. Bergametti et al., “Genotype-phenotype correlations in cerebral cavernous malformations patients,” Annals of Neurology, vol. 60, no. 5, pp. 550–556, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Riant, M. Cecillon, P. Saugier-Veber, and E. Tournier-Lasserve, “CCM molecular screening in a diagnosis context: novelunclassified variants leading to abnormal splicing and importance of large deletions,” Neurogenetics, vol. 14, pp. 133–141, 2013.
  24. U. Felbor, S. Gaetzner, D. J. Verlaan, R. Vijzelaar, G. A. Rouleau, and A. M. Siegel, “Large germline deletions and duplication in isolated cerebral cavernous malformation patients,” Neurogenetics, vol. 8, no. 2, pp. 149–153, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Tsutsumi, I. Ogino, M. Miyajima et al., “Genomic causes of multiple cerebral cavernous malformations in a Japanese population,” Journal of Clinical Neuroscience, vol. 20, pp. 667–669, 2013.
  26. F. Riant, F. Bergametti, X. Ayrignac, G. Boulday, and E. Tournier-Lasserve, “Recent insights into cerebral cavernous malformations: the molecular genetics of CCM,” FEBS Journal, vol. 277, no. 5, pp. 1070–1075, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. D. J. Verlaan, S. B. Laurent, G. A. Rouleau, and A. M. Siegel, “No CCM2 mutations in a cohort of 31 sporadic cases,” Neurology, vol. 63, no. 10, p. 1979, 2004. View at Scopus
  28. D. J. Verlaan, S. B. Laurent, U. Sure et al., “CCM1 mutation screen of sporadic cases with cerebral cavernous malformations,” Neurology, vol. 62, no. 7, pp. 1213–1215, 2004. View at Scopus
  29. C. L. Liquori, S. Penco, J. Gault et al., “Different spectra of genomic deletions within the CCM genes between Italian and American CCM patient cohorts,” Neurogenetics, vol. 9, no. 1, pp. 25–31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Stahl, S. Gaetzner, K. Voss et al., “Novel CCM1, CCM2, and CCM3 mutations in patients with cerebral cavernous malformations: in-frame deletion in CCM2 prevents formation of a CCM1/CCM2/CCM3 protein complex,” Human Mutation, vol. 29, no. 5, pp. 709–717, 2008. View at Publisher · View at Google Scholar · View at Scopus