About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 460706, 18 pages
http://dx.doi.org/10.1155/2013/460706
Research Article

Natural Killer Dendritic Cells Enhance Immune Responses Elicited by α-Galactosylceramide-Stimulated Natural Killer T Cells

1Department of Bioscience and Biotechnology, Institute of Bioscience, Sejong University, Seoul 143-747, Republic of Korea
2Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Republic of Korea

Received 31 December 2012; Revised 28 April 2013; Accepted 13 May 2013

Academic Editor: Anton M. Jetten

Copyright © 2013 Sung Won Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Walzer, M. Dalod, S. H. Robbins, L. Zitvogel, and E. Vivier, “Natural-killer cells and dendritic cells: “l'union fait la force”,” Blood, vol. 106, no. 7, pp. 2252–2258, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. D. I. Godfrey, K. J. L. Hammond, L. D. Poulton, M. J. Smyth, and A. G. Baxter, “NKT cells: facts, functions and fallacies,” Immunology Today, vol. 21, no. 11, pp. 573–583, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Carnaud, D. Lee, O. Donnars et al., “Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells,” Journal of Immunology, vol. 163, no. 9, pp. 4647–4650, 1999. View at Scopus
  4. S.-I. Fujii, K. Shimizu, H. Hemmi, and R. M. Steinman, “Innate Vα14+ natural killer T cells mature dendritic cells, leading to strong adaptive immunity,” Immunological Reviews, vol. 220, no. 1, pp. 183–198, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Ueda, M. Hagihara, B. Gansuvd, et al., “The effects of alphaGalCer-induced TCRValpha24 Vbeta11(+) natural killer T cells on NK cell cytotoxicity in umbilical cord blood,” Cancer Immunology, Immunotherapy, vol. 52, no. 58, pp. 625–631, 2003. View at Publisher · View at Google Scholar
  6. J. Hua, S. Liang, X. Ma, T. J. Webb, J. P. Potter, and Z. Li, “The interaction between regulatory T cells and NKT cells in the liver: a CD1d bridge links innate and adaptive immunity,” PLoS ONE, vol. 6, no. 11, article e27038, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Hongo, X. Tang, S. Dutt, R. G. Nador, and S. Strober, “Interactions between NKT cells and Tregs are required for tolerance to combined bone marrow and organ transplants,” Blood, vol. 119, no. 6, pp. 1581–1589, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. K. H. Oh, C. Lee, S. W. Lee et al., “Activation of natural killer T cells inhibits the development of induced regulatory T cells via IFNγ,” Biochemical and Biophysical Research Communications, vol. 411, no. 3, pp. 599–606, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Sakaguchi, T. Yamaguchi, T. Nomura, and M. Ono, “Regulatory T cells and immune tolerance,” Cell, vol. 133, no. 5, pp. 775–787, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Trzonkowski, E. Szmit, J. Myśliwska, A. Dobyszuk, and A. Myśliwski, “CD4+CD25+ T regulatory cells inhibit cytotoxic activity of T CD8+ and NK lymphocytes in the direct cell-to-cell interaction,” Clinical Immunology, vol. 112, no. 3, pp. 258–267, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Ralainirina, A. Poli, T. Michel et al., “Control of NK cell functions by CD4+CD25+ regulatory T cells,” Journal of Leukocyte Biology, vol. 81, no. 1, pp. 144–153, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. U. K. Liyanage, T. T. Moore, H.-G. Joo et al., “Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma,” Journal of Immunology, vol. 169, no. 5, pp. 2756–2761, 2002. View at Scopus
  13. V. G. Pillarisetty, S. C. Katz, J. I. Bleier, A. B. Shah, and R. P. DeMatteo, “Natural killer dendritic cells have both antigen presenting and lytic function and in response to CpG produce IFN-γ via autocrine IL-12,” Journal of Immunology, vol. 174, no. 5, pp. 2612–2618, 2005. View at Scopus
  14. C. W. Chan, E. Crafton, H.-N. Fan et al., “Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity,” Nature Medicine, vol. 12, no. 2, pp. 207–213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Taieb, N. Chaput, C. Ménard et al., “A novel dendritic cell subset involved in tumor immunosurveillance,” Nature Medicine, vol. 12, no. 2, pp. 214–219, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Larmonier, J. Fraszczak, D. Lakomy, B. Bonnotte, and E. Katsanis, “Killer dendritic cells and their potential for cancer immunotherapy,” Cancer Immunology, Immunotherapy, vol. 59, no. 1, pp. 1–11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. U. I. Chaudhry, S. C. Katz, T. P. Kingham et al., “In vivo overexpression of Flt3 ligand expands and activates murine spleen natural killer dendritic cells,” The FASEB Journal, vol. 20, no. 7, pp. 982–984, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Lecoeur, M. Février, S. Garcia, Y. Rivière, and M.-L. Gougeon, “A novel flow cytometric assay for quantitation and multiparametric characterization of cell-mediated cytotoxicity,” Journal of Immunological Methods, vol. 253, no. 1-2, pp. 177–187, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Hochweller, J. Striegler, G. J. Hämmerling, and N. Garbi, “A novel CD11c.DTR transgenic mouse for depletion of dendritic cells reveals their requirement for homeostatic proliferation of natural killer cells,” European Journal of Immunology, vol. 38, no. 10, pp. 2776–2783, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Assarsson, T. Kambayashi, J. D. Schatzle et al., “NK cells stimulate proliferation of T and NK cells through 2B4/CD48 interactions,” Journal of Immunology, vol. 173, no. 1, pp. 174–180, 2004. View at Scopus
  21. B. Messmer, P. Eissmann, S. Stark, and G. Watzl, “CD48 stimulation by 2B4 (CD244)-expressing targets activates human NK cells,” Journal of Immunology, vol. 176, no. 8, pp. 4646–4650, 2006. View at Scopus
  22. G. Trinchieri, “Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity,” Annual Review of Immunology, vol. 13, pp. 251–276, 1995. View at Scopus
  23. D. Caretto, S. D. Katzman, A. V. Villarino, E. Gallo, and A. K. Abbas, “Cutting edge: the Th1 response inhibits the generation of peripheral regulatory T cells,” Journal of Immunology, vol. 184, no. 1, pp. 30–34, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. J.-H. Chang, Y.-J. Kim, S.-H. Han, and C.-Y. Kang, “IFN-γ-STAT1 signal regulates the differentiation of inducible Treg: potential role for ROS-mediated apoptosis,” European Journal of Immunology, vol. 39, no. 5, pp. 1241–1251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. X. Valencia, G. Stephens, R. Goldbach-Mansky, M. Wilson, E. M. Shevach, and P. E. Lipsky, “TNF downmodulates the function of human CD4+CD25hi T-regulatory cells,” Blood, vol. 108, no. 1, pp. 253–261, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Jinushi, T. Takehara, T. Tatsumi et al., “Expression and role of MICA and MICB in human hepatocellular carcinomas and their regulation by retinoic acid,” International Journal of Cancer, vol. 104, no. 3, pp. 354–361, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Wågsäter, J. Dimberg, A. Hugander, A. Sirsjö, and M. Ghaderi, “Analysis of MICA gene transcripts in human rectal cancers,” Anticancer Research, vol. 23, no. 3 B, pp. 2525–2529, 2003. View at Scopus
  28. S.-M. Lu, P. Xiao, L. Xue et al., “Prevalent expression of MHC class I chain-related molecule A in human osteosarcoma,” Neoplasma, vol. 55, no. 3, pp. 266–272, 2008. View at Scopus
  29. T. A. Moo-Young, J. W. Larson, B. A. Belt et al., “Tumor-derived TGF-β mediates conversion of CD4+Foxp3+ regulatory T cells in a murine model of pancreas cancer,” Journal of Immunotherapy, vol. 32, no. 1, pp. 12–21, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Roux, L. Apetoh, F. Chalmin et al., “CD4+CD25+ Tregs control the TRAIL-dependent cytotoxicity of tumor-infiltrating DCs in rodent models of colon cancer,” Journal of Clinical Investigation, vol. 118, no. 11, pp. 3751–3761, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Hackl, J. Loschko, T. Sparwasser, W. Reindl, and A. B. Krug, “Activation of dendritic cells via TLR7 reduces Foxp3 expression and suppressive function in induced Tregs,” European Journal of Immunology, vol. 41, no. 5, pp. 1334–1343, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. F. S. Wong and C. M. Dayan, “Regulatory T cells in autoimmune endocrine diseases,” Trends in Endocrinology and Metabolism, vol. 19, no. 8, pp. 292–299, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Liao, S. Nayak, J. R. Regueiro et al., “GITR engagement preferentially enhances proliferation of functionally competent CD4+CD25+FoxP3+ regulatory T cells,” International Immunology, vol. 22, no. 4, pp. 259–270, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. L. T. Krausz, E. Fischer-Fodor, Z. Z. Major, and B. Fetica, “GITR-expressing regulatory T-cell subsets are increased in tumor-positive lymph nodes from advanced breast cancer patients as compared to tumor-negative lymph nodes,” International Journal of Immunopathology and Pharmacology, vol. 25, no. 190, pp. 59–66, 2012.
  35. G. Darrasse-Jèze, S. Deroubaix, H. Mouquet et al., “Feedback control of regulatory T cell homeostasis by dendritic cells in vivo,” Journal of Experimental Medicine, vol. 206, no. 9, pp. 1853–1862, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Caielli, C. Conforti-Andreoni, C. Di Pietro et al., “On/off TLR signaling decides proinflammatory or tolerogenic dendritic cell maturation upon CD1D-mediated interaction with invariant NKT cells,” Journal of Immunology, vol. 185, no. 12, pp. 7317–7329, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Paget, M. T. Chow, H. Duret, S. R. Mattarollo, and M. J. Smyth, “Role of γδ T cells in α-galactosylceramide-mediated immunity,” Journal of Immunology, vol. 188, no. 8, pp. 3928–3939, 2012. View at Publisher · View at Google Scholar · View at Scopus