About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 463168, 4 pages
http://dx.doi.org/10.1155/2013/463168
Research Article

Highly Ordered Architecture of MicroRNA Cluster

1Department of Geriatric Cardiology, Beijing Military General Hospital, Beijing 100700, China
2The 14th Beijing High School, Beijing, 100020, China
3School of Computer Science and Engineering, Hebei University of Technology, Tianjin 300401, China

Received 18 July 2013; Accepted 3 September 2013

Academic Editor: Qinghua Cui

Copyright © 2013 Bing Shi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. B. Carroll, “Homeotic genes and the evolution of arthropods and chordates,” Nature, vol. 376, no. 6540, pp. 479–485, 1995. View at Scopus
  2. D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Sawera, J. Gorodkin, S. Cirera, and M. Fredholm, “Mapping and expression studies of the mir17-92 cluster on pig Chromosome 11,” Mammalian Genome, vol. 16, no. 8, pp. 594–598, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Lu, Q. Zhang, M. Deng et al., “An analysis of human microRNA and disease associations,” PLoS ONE, vol. 3, no. 10, Article ID e3420, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Wang, J. Wang, M. Lu, F. Song, and Q. Cui, “Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases,” Bioinformatics, vol. 26, no. 13, pp. 1644–1650, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Hayashita, H. Osada, Y. Tatematsu et al., “A polycistronic MicroRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation,” Cancer Research, vol. 65, no. 21, pp. 9628–9632, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Willimott and S. D. Wagner, “Stromal cells and CD40 ligand (CD154) alter the miRNome and induce miRNA clusters including, miR-125b/miR-99a/let-7c and miR-17-92 in chronic lymphocytic leukaemia,” Leukemia, vol. 26, pp. 1113–1116, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Conkrite, M. Sundby, S. Mukai et al., “Mir-17~92 cooperates with RB pathway mutations to promote retinoblastoma,” Genes and Development, vol. 25, no. 16, pp. 1734–1745, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Valladares-Ayerbes, M. Blanco, M. Haz et al., “Prognostic impact of disseminated tumor cells and microRNA-17-92 cluster deregulation in gastrointestinal cancer,” International Journal of Oncology, vol. 39, no. 5, pp. 1253–1264, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Chen, C. Li, R. Zhang et al., “MiR-17-92 cluster microRNAs confers tumorigenicity in multiple myeloma,” Cancer Letters, vol. 309, no. 1, pp. 62–70, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. T.-F. F. Chow, M. Mankaruos, A. Scorilas et al., “The miR-17-92 cluster is over expressed in and has an oncogenic effect on renal cell carcinoma,” Journal of Urology, vol. 183, no. 2, pp. 743–751, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Mu, Y.-C. Han, D. Betel et al., “Genetic dissection of the miR-17-92 cluster of microRNAs in Myc-induced B-cell lymphomas,” Genes and Development, vol. 23, no. 24, pp. 2806–2811, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. P. A. Northcott, A. Fernandez-L, J. P. Hagan et al., “The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors,” Cancer Research, vol. 69, no. 8, pp. 3249–3255, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Uziel, F. V. Karginov, S. Xie et al., “The miR-17-92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 8, pp. 2812–2817, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Nagel, L. Venturini, G. K. Przybylski et al., “Activation of miR-17-92 by NK-like homeodomain proteins suppresses apoptosis via reduction of E2F1 in T-cell acute lymphoblastic leukemia,” Leukemia and Lymphoma, vol. 50, no. 1, pp. 101–108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Takakura, N. Mitsutake, M. Nakashima et al., “Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells,” Cancer Science, vol. 99, no. 6, pp. 1147–1154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Rinaldi, G. Poretti, I. Kwee et al., “Concomitant MYC and microRNA cluster miR-17-92 (C13orf25) amplification in human mantle cell lymphoma,” Leukemia and Lymphoma, vol. 48, no. 2, pp. 410–412, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Liang, D. Ridzon, L. Wong, and C. Chen, “Characterization of microRNA expression profiles in normal human tissues,” BMC Genomics, vol. 8, article 166, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Bell, A. Berchuck, M. Birrer, et al., “Integrated genomic analyses of ovarian carcinoma,” Nature, vol. 474, no. 7353, pp. 609–615, 2011.
  20. A. Keller, P. Leidinger, A. Bauer et al., “Toward the blood-borne miRNome of human diseases,” Nature Methods, vol. 8, no. 10, pp. 841–843, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Olive, M. J. Bennett, J. C. Walker et al., “miR-19 is a key oncogenic component of mir-17-92,” Genes and Development, vol. 23, no. 24, pp. 2839–2849, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Tsuchida, S. Ohno, W. Wu et al., “miR-92 is a key oncogenic component of the miR-17-92 cluster in colon cancer,” Cancer Science, vol. 102, no. 12, pp. 2264–2271, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. S. G. Chaulk, G. L. Thede, O. A. Kent et al., “Role of pri-miRNA tertiary structure in miR-17~92 miRNA biogenesis,” RNA Biology, vol. 8, no. 6, 2011. View at Publisher · View at Google Scholar · View at Scopus