About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 467263, 7 pages
http://dx.doi.org/10.1155/2013/467263
Research Article

The Effect of Created Local Hyperosmotic Microenvironment in Microcapsule for the Growth and Metabolism of Osmotolerant Yeast Candida krusei

1Department of Biotechnology and Bioengineering, Huaqiao University, Xiamen 361021, China
2Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, China

Received 2 April 2013; Revised 15 September 2013; Accepted 16 September 2013

Academic Editor: Hongjuan Liu

Copyright © 2013 Guo Chen and Shanjing Yao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. X. Wang, J. Zhuge, H. Y. Fang, and B. A. Prior, “Glycerol production by microbial fermentation: a review,” Biotechnology Advances, vol. 19, no. 3, pp. 201–223, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Vijaikishore and N. G. Karanth, “Glycerol production by fermentation—a review,” Process Biochemistry, vol. 21, pp. 54–57, 1986.
  3. H. J. Liu, D. H. Liu, and J. J. Zhong, “Novel fermentation strategy for enhancing glycerol production by Candida krusei,” Biotechnology Progress, vol. 19, no. 5, pp. 1615–1619, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. H. R. Jin, H. Y. Fang, and J. Zhuge, “By-product formation by a novel glycerol-producing yeast, Candida glycerinogenes, with different O2 supplies,” Biotechnology Letters, vol. 25, no. 4, pp. 311–314, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Z. Chen, H. Y. Fang, Z. M. Rao et al., “Cloning and characterization of a NAD+-dependent glycerol-3-phosphate dehydrogenase gene from Candida glycerinogenes, an industrial glycerol producer,” FEMS Yeast Research, vol. 8, no. 5, pp. 725–734, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. P. E. Thomé, “Heterologous expression of glycerol 3-phosphate dehydrogenase gene [DhGPD1] from the osmotolerant yeast Debaryomyces hansenii in Saccharomyces cerevisiae,” Current Microbiology, vol. 51, no. 2, pp. 87–90, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Djelal, A. Amrane, F. Lahrer, and G. Martin, “Effect of medium osmolarity on the bioproduction of glycerol and ethanol by Hansenula anomala growing on glucose and ammonium,” Applied Microbiology and Biotechnology, vol. 69, no. 3, pp. 341–349, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Kayingo, S. G. Kilian, and B. A. Prior, “Conservation and release of osmolytes by yeasts during hypo-osmotic stress,” Archives of Microbiology, vol. 177, no. 1, pp. 29–35, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Larsson, C. Morales, L. Gustafsson, and L. Adler, “Osmoregulation of the salt-tolerant yeast Debaryomyces hansenii grown in a chemostat at different salinities,” Journal of Bacteriology, vol. 172, no. 4, pp. 1769–1774, 1990. View at Scopus
  10. Y. Q. Liu, D. H. Liu, Q. Su, and D. M. Xie, “Glycerol production by Candida krusei employing NaCl as an osmoregulator in batch and continuous fermentations,” Biotechnology Letters, vol. 24, no. 14, pp. 1137–1140, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. J. K. Park and H. N. Chang, “Microencapsulation of microbial cells,” Biotechnology Advances, vol. 18, no. 4, pp. 303–319, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. N. A. Mostafa and Y. H. Magdy, “Utilization of molasses and akalona hydrolyzate for continuous glycerol production in a packed bed bioreactor,” Energy Conversion and Management, vol. 39, no. 7, pp. 671–677, 1998. View at Scopus
  13. F. Remize, L. Barnavon, and S. Dequin, “Glycerol export and glycerol-3-phosphate dehydrogenase, but not glycerol phosphatase, are rate limiting for glycerol production in Saccharomyces cerevisiae,” Metabolic Engineering, vol. 3, no. 4, pp. 301–312, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Shen, S. J. Yao, and Z. J. Ye, “Study on the preparation of sodium cellulose sulfate,” Chemical Reaction Engineering and Technology, vol. 15, no. 3, pp. 307–313, 1999. View at Scopus
  15. D. Lewińska, S. Rosiński, D. Hunkeler, D. Poncelet, and A. Weryński, “Mass transfer coefficient in characterization of gel beads and microcapsules,” Journal of Membrane Science, vol. 209, no. 2, pp. 533–540, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. G. L. Miller, “Use of dinitrosalicylic acid reagent for determination of reducing sugar,” Analytical Chemistry, vol. 31, no. 3, pp. 426–428, 1959. View at Scopus
  17. M. R. F. Ashworth, in Analytical Methods for Glycerol, A. A. Newman, Ed., pp. 19–21, Academic Press, New York, NY, USA, 1979.
  18. A. Blomberg and L. Adler, “Physiology of osmotolerance in fungi,” Advances in Microbial Physiology, vol. 33, pp. 145–212, 1992. View at Scopus
  19. J. Zhang, S. J. Yao, and Y. X. Guan, “Preparation of macroporous sodium cellulose sulphate/poly(dimethyldiallylammonium chloride) capsules and their characteristics,” Journal of Membrane Science, vol. 255, no. 1-2, pp. 89–98, 2005. View at Publisher · View at Google Scholar · View at Scopus