About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 469180, 12 pages
http://dx.doi.org/10.1155/2013/469180
Research Article

Effects of an Agaricus blazei Aqueous Extract Pretreatment on Paracetamol-Induced Brain and Liver Injury in Rats

Department of Biochemistry, University of Maringá, 87020900 Maringá, PR, Brazil

Received 15 May 2013; Accepted 2 July 2013

Academic Editor: Filippo De Simone

Copyright © 2013 Andréia A. Soares et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. M. Peralta, A. L. De Oliveira, G. J. Eler, A. A. Soares, and A. Bracht, “Funcional properties of edible and medicinal mushrooms,” Current Trends in Microbiology, vol. 4, pp. 45–60, 2008.
  2. I. C. F. R. Ferreira, L. Barros, and R. M. V. Abreu, “Antioxidants in wild mushrooms,” Current Medicinal Chemistry, vol. 16, no. 12, pp. 1543–1560, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. Z. R. Guterrez, M. S. Mantovani, A. F. Eira, L. R. Ribeiro, and B. Q. Jordão, “Variation of the antimutagenicity effects of water extracts of Agaricus blazei Murrill in vitro,” Toxicology in Vitro, vol. 18, no. 3, pp. 301–309, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. R. C. R. N. Menoli, M. S. Mantovani, L. R. Ribeiro, G. Speit, and B. Q. Jordão, “Antimutagenic effects of the mushroom Agaricus blazei Murrill extracts on V79 cells,” Mutation Research, vol. 496, no. 1-2, pp. 5–13, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. M. F. Bellini, J. P. F. Angeli, R. Matuo, A. P. Terezan, L. R. Ribeiro, and M. S. Mantovani, “Antigenotoxicity of Agaricus blazei mushroom organic and aqueous extracts in chromosomal aberration and cytokinesis block micronucleus assays in CHO-k1 and HTC cells,” Toxicology in Vitro, vol. 20, no. 3, pp. 355–360, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Firenzuoli, L. Gori, and G. Lombardo, “The medicinal mushroom Agaricus blazei murrill: review of literature and pharmaco-toxicological problems,” Evidence-Based Complementary and Alternative Medicine, vol. 5, no. 1, pp. 3–15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Mizuno, “Health foods and medicinal usages of mushrooms,” Food Review International, vol. 11, pp. 69–91, 1995.
  8. P. R. S. Kodavanti, U. M. Joshi, R. A. Young, E. F. Meydrech, and H. M. Mehendale, “Protection of hepatotoxic and lethal effects of CCl4 by partial hepatectomy,” Toxicologic Pathology, vol. 17, no. 3, pp. 494–505, 1989. View at Scopus
  9. Y.-H. Shieh, C.-F. Liu, Y.-K. Huang et al., “Evaluation of the hepatic and renal-protective effects of ganoderma lucidum in mice,” American Journal of Chinese Medicine, vol. 29, no. 3-4, pp. 501–507, 2001. View at Scopus
  10. Y.-W. Wu, K.-D. Chen, and W.-C. Lin, “Effect of Ganoderma tsugae on chronically carbon tetrachloride-intoxicated rats,” American Journal of Chinese Medicine, vol. 32, no. 6, pp. 841–850, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. C.-H. Hsu, K.-C. Hwang, Y.-H. Chiang, and P. Chou, “The mushroom Agaricus blazei Murill extract normalizes liver function in patients with chronic hepatitis B,” Journal of Alternative and Complementary Medicine, vol. 14, no. 3, pp. 299–301, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. L. F. Barbisan, M. Miyamoto, C. Scolastici et al., “Influence of aqueous extract of Agaricus blazei on rat liver toxicity induced by different doses of diethylnitrosamine,” Journal of Ethnopharmacology, vol. 83, no. 1-2, pp. 25–32, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. A. L. De Oliveira, G. J. Eler, A. Bracht, and R. M. Peralta, “Purinergic effects of a hydroalcoholic Agaricus brasiliensis (A. blazei) extract on liver functions,” Journal of Agricultural and Food Chemistry, vol. 58, no. 12, pp. 7202–7210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. V. E. C. Ooi, “Hepatoprotective effect of some edible mushrooms,” Phytotherapy Research, vol. 10, pp. 536–538, 1996.
  15. N. Kaplowitz, “Idiosyncratic drug hepatotoxicity,” Nature Reviews Drug Discovery, vol. 4, no. 6, pp. 489–499, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. C. I. Ghanem, M. L. Ruiz, S. S. M. Villanueva et al., “Effect of repeated administration with subtoxic doses of acetaminophen to rats on enterohepatic recirculation of a subsequent toxic dose,” Biochemical Pharmacology, vol. 77, no. 10, pp. 1621–1628, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. Y.-H. Chen, F.-Y. Lin, P.-L. Liu et al., “Antioxidative and hepatoprotective effects of magnolol on acetaminophen-induced liver damage in rats,” Archives of Pharmacal Research, vol. 32, no. 2, pp. 221–228, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Burnstock, “Pathophysiology and therapeutic potential of purinergic signaling,” Pharmacological Reviews, vol. 58, no. 1, pp. 58–86, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Scopus
  20. A. M. Itinose, M. L. Doi-Sakuno, and A. Bracht, “Metabolic effects of acetaminophen. Studies in the isolated perfused rat liver,” Cell Biochemistry and Function, vol. 7, no. 4, pp. 263–273, 1989. View at Scopus
  21. E. J. Oliveira, D. G. Watson, and N. S. Morton, “A simple microanalytical technique for the determination of paracetamol and its main metabolites in blood spots,” Journal of Pharmaceutical and Biomedical Analysis, vol. 29, no. 5, pp. 803–809, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Ohkawa, N. Ohishi, and K. Yagi, “Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction,” Analytical Biochemistry, vol. 95, no. 2, pp. 351–358, 1979. View at Scopus
  23. A. Bhattacharya, R. A. Lawrence, A. Krishnan, K. Zaman, D. Sun, and G. Fernandes, “Effect of dietary n-3 and n-6 oils with and without food restriction on activity of antioxidant enzymes and lipid peroxidation in livers of cyclophosphamide treated autoimmune-prone NZB/W female mice,” Journal of the American College of Nutrition, vol. 22, no. 5, pp. 388–399, 2003. View at Scopus
  24. S. J. Posadas, V. Caz, C. Largo et al., “Protective effect of supercritical fluid rosemary extract, Rosmarinus officinalis, on antioxidants of major organs of aged rats,” Experimental Gerontology, vol. 44, no. 6-7, pp. 383–389, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. P. J. Hissin and R. H. Hilf, “A fluorometric method for determination of oxidized and reduced glutathione in tissues,” Analytical Biochemistry, vol. 74, no. 1, pp. 214–226, 1976. View at Scopus
  26. G. L. Ellman, “Tissue sulfhydryl groups,” Archives of Biochemistry and Biophysics, vol. 82, no. 1, pp. 70–77, 1959. View at Scopus
  27. J. Sedlak and R. H. Lindsay, “Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent,” Analytical Biochemistry, vol. 25, no. C, pp. 192–205, 1968. View at Scopus
  28. H. Aebi, “Catalase,” in Methods of Enzymatic Analysis, H. U. Bergmeyer, Ed., Chemie-Academic Press, London, UK, 1974.
  29. H. U. Bergmeyer, Ed., Methods of Enzymatic Analysis, Chemie-Academic Press, London, UK, 1974.
  30. S. Marklund and G. Marklund, “Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase,” European Journal of Biochemistry, vol. 47, no. 3, pp. 469–474, 1974. View at Scopus
  31. D. E. Paglia and W. N. Valentine, “Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase,” The Journal of Laboratory and Clinical Medicine, vol. 70, no. 1, pp. 158–169, 1967. View at Scopus
  32. A. L. Tappel, “Glutathione peroxidase and hydroperoxides,” Methods in Enzymology, vol. 52, no. C, pp. 506–513, 1978. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Scholz and T. Bücher, “Hemoglobin-free perfusion of rat liver,” in Control of Energy Metabolism, B. Chance, R. W. Estabrook, and J. R. Williamson, Eds., Academic Press, New York, NY, USA, 1965.
  34. A. Bracht, E. L. Ishii-Iwamoto, and A. M. Kelmer-Bracht, “O estudo do metabolismo no fígado em perfusão,” in Métodos de Laboratório em Bioquimica, A. Bracht and E. L. Ishii-Iwamoto, Eds., Editora Manole, São Paulo, Brazil, 2003.
  35. J. Folch, M. Lees, and G. H. Stanley, “A simple method for the isolation and purification of total lipides from animal tissues,” The Journal of Biological Chemistry, vol. 226, no. 1, pp. 497–509, 1957. View at Scopus
  36. Z.-M. Lu, W.-Y. Tao, X.-L. Zou, H.-Z. Fu, and Z.-H. Ao, “Protective effects of mycelia of Antrodia camphorata and Armillariella tabescens in submerged culture against ethanol-induced hepatic toxicity in rats,” Journal of Ethnopharmacology, vol. 110, no. 1, pp. 160–164, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. R. B. Bazotte, J. Constantin, N. S. Hell, and A. Bracht, “Hepatic metabolism of meal-fed rats: studies in vivo and in the isolated perfused liver,” Physiology and Behavior, vol. 48, no. 2, pp. 247–253, 1990. View at Publisher · View at Google Scholar · View at Scopus
  38. R. B. Bazotte, J. Constantin, R. Curi, F. S. Kemmelmeier, N. S. Hell, and A. Bracht, “The sensitivity of glycogenolysis to glucagon, epinephrine and cyanide in livers from rats in different metabolic conditions,” Research Communications in Chemical Pathology and Pharmacology, vol. 64, no. 2, pp. 193–203, 1989. View at Scopus
  39. A. M. Itinose, M. L. Doi-Sakuno, and A. Bracht, “N-acetylcysteine stimulates hepatic glycogen deposition in the rat,” Research Communications in Chemical Pathology and Pharmacology, vol. 83, no. 1, pp. 87–92, 1994. View at Scopus
  40. A. A. Soares, C. G. M. de Souza, F. M. Daniel, G. P. Ferrari, S. M. G. da Costa, and R. M. Peralta, “Antioxidant activity and total phenolic content of Agaricus brasiliensis (Agaricus blazei Murril) in two stages of maturity,” Food Chemistry, vol. 112, no. 4, pp. 775–781, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. A. E. S. S. Carvajal, E. A. Koehnlein, A. A. Soares et al., “Bioactives of fruiting bodies and submerged culture mycelia of Agaricus brasiliensis (A. blazei) and their antioxidant properties,” LWT-Food Science and Technology, vol. 46, no. 2, pp. 493–499, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Shahidi and P. K. Wanasundara, “Phenolic antioxidants,” Critical reviews in food science and nutrition, vol. 32, no. 1, pp. 67–103, 1992. View at Scopus
  43. Y.-B. Ker, K.-C. Chen, C.-C. Chyau et al., “Antioxidant capability of polysaccharides fractionated from submerge-cultured Agaricus blazei mycelia,” Journal of Agricultural and Food Chemistry, vol. 53, no. 18, pp. 7052–7058, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. L. V. Xiru, L. Guo, M. Chang, Z. Li, G. Wang, and C. Fend, “Activity of polysaccharide from Agaricus blazei Murrill,” Acta Edulis Fungi, vol. 17, pp. 73–75, 2010.
  45. S. A. Nada, E. A. Omara, O. M. E. Abdel-Salam, and H. G. Zahran, “Mushroom insoluble polysaccharides prevent carbon tetrachloride-induced hepatotoxicity in rat,” Food and Chemical Toxicology, vol. 48, no. 11, pp. 3184–3188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. F. M. Refaie, A. Y. Esmat, A. S. Daba, W. M. Osman, and S. M. Taha, “Hepatoprotective activity of polysaccharopeptides from Pleurotus ostreatus mycelium on thioacetamide-intoxicated mice,” Micologia Aplicada International, vol. 22, no. 1, pp. 1–13, 2010.
  47. Y.-R. Zhang, D.-W. Wang, Y.-Y. Zhang, T.-T. Liu, and Y. Li, “Preparation, characterization and properties of Agaricus blazei murill oligopeptide,” Chemical Journal of Chinese Universities, vol. 30, no. 2, pp. 293–296, 2009. View at Scopus
  48. V. Ramkumar, Z. Nie, L. P. Rybak, and S. B. Maggirwar, “Adenosine, antioxidant enzymes and cytoprotection,” Trends in Pharmacological Sciences, vol. 16, no. 9, pp. 283–285, 1995. View at Publisher · View at Google Scholar · View at Scopus
  49. Z. Nie, Y. Mei, M. Ford et al., “Oxidative stress increases A1 adenosine receptor expression by activating nuclear factor κB,” Molecular Pharmacology, vol. 53, no. 4, pp. 663–669, 1998. View at Scopus
  50. M.-F. Wu, Y.-M. Hsu, M.-C. Tang et al., “Agaricus blazei Murill extract abrogates CCl4-induced liver injury in rats,” In Vivo, vol. 25, no. 1, pp. 35–40, 2011. View at Scopus
  51. Z. Fedatto Jr., E. L. Ishii-Iwamoto, C. B. Amado et al., “Gluconeogenesis in the liver of arthritic rats,” Cell Biochemistry and Function, vol. 17, pp. 271–278, 1999.
  52. A. O. Christoff, A. de Oliveira, O. M. Chaim et al., “Effects of the venom and the dermonecrotic toxin LiRecDT1 of Loxosceles intermedia in the rat liver,” Toxicon, vol. 52, no. 6, pp. 695–704, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. A. M. Kelmer-Bracht, A. C. Broetto-Biazon, A. B. De Sá-Nakanishi, E. L. Ishii-Iwamoto, and A. Bracht, “Low doses of tumour necrosis factor α and interleukin 1β diminish hepatic gluconeogenesis from alanine in vivo,” Basic and Clinical Pharmacology and Toxicology, vol. 99, no. 5, pp. 335–339, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Kuwajima, C. B. Newgard, D. W. Foster, and J. D. McGarry, “The glucose-phosphorylating capacity of liver as measured by three independent assays. Implications for the mechanism of hepatic glycogen synthesis,” Journal of Biological Chemistry, vol. 261, no. 19, pp. 8849–8853, 1986. View at Scopus
  55. S. R. Setty, A. A. Quereshi, A. H. M. V. Swamy et al., “Hepatoprotective activity of Calotropis procera flowers against paracetamol-induced hepatic injury in rats,” Fitoterapia, vol. 78, no. 7-8, pp. 451–454, 2007. View at Publisher · View at Google Scholar · View at Scopus