About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 472347, 9 pages
http://dx.doi.org/10.1155/2013/472347
Research Article

Significance of Coronary Calcification for Prediction of Coronary Artery Disease and Cardiac Events Based on 64-Slice Coronary Computed Tomography Angiography

1Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
2Discipline of Medical Imaging, Department of Imaging and Applied Physics, Curtin University, Perth, WA 6845, Australia
3Department of Public Health and Center of Biostatistics, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
4Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada L8S 4L8
5Second Section of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan

Received 3 January 2013; Accepted 4 February 2013

Academic Editor: Fan-Lin Kong

Copyright © 2013 Yuan-Chang Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. B. Kannel and A. Schatzkin, “Sudden death: lessons from subsets in population studies,” Journal of the American College of Cardiology, vol. 5, no. 6, supplement 1, pp. 141B–149B, 1985. View at Scopus
  2. M. J. Budoff and K. M. Gul, “Expert review on coronary calcium,” Vascular Health and Risk Management, vol. 4, no. 2, pp. 315–324, 2008. View at Scopus
  3. C. C. Chen, C. C. Chen, I. C. Hsieh, et al., “The effect of calcium score on the diagnostic accuracy of coronary computed tomography angiography,” International Journal of Cardiovascular Imaging, vol. 27, supplement 1, pp. 37–42, 2011. View at Publisher · View at Google Scholar
  4. M. J. Budoff, S. Achenbach, R. S. Blumenthal et al., “Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology,” Circulation, vol. 114, no. 16, pp. 1761–1791, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. A. S. Agatston, W. R. Janowitz, F. J. Hildner, N. R. Zusmer, M. Viamonte, and R. Detrano, “Quantification of coronary artery calcium using ultrafast computed tomography,” Journal of the American College of Cardiology, vol. 15, no. 4, pp. 827–832, 1990. View at Scopus
  6. P. Greenland, L. LaBree, S. P. Azen, T. M. Doherty, and R. C. Detrano, “Coronary artery calcium score combined with framingham score for risk prediction in asymptomatic individuals,” The Journal of the American Medical Association, vol. 291, no. 2, pp. 210–215, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Georgiou, M. J. Budoff, E. Kaufer, J. M. Kennedy, B. Lu, and B. H. Brundage, “Screening patients with chest pain in the emergency department using electron beam tomography: a follow-up study,” Journal of the American College of Cardiology, vol. 38, no. 1, pp. 105–110, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Pundziute, J. D. Schuijf, J. W. Jukema et al., “Prognostic value of multislice computed tomography coronary angiography in patients with known or suspected coronary artery disease,” Journal of the American College of Cardiology, vol. 49, no. 1, pp. 62–70, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Detrano, A. D. Guerci, J. J. Carr et al., “Coronary calcium as a predictor of coronary events in four racial or ethnic groups,” The New England Journal of Medicine, vol. 358, no. 13, pp. 1336–1345, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Hadamitzky, R. Distler, T. Meyer et al., “Prognostic value of coronary computed tomographic angiography in comparison with calcium scoring and clinical risk scores,” Circulation, vol. 4, no. 1, pp. 16–23, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. E. S. Ma, Z. G. Yang, Y. Li, Z. H. Dong, L. Zhang, and L. L. Qian, “Correlation of calcium measurement with low dose 64-slice CT and angiographic stenosis in patients with suspected coronary artery disease,” International Journal of Cardiology, vol. 140, no. 2, pp. 249–252, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. H. Hou, B. Lu, Y. Gao, et al., “Prognostic value of coronary CT angiography and calcium score for major adverse cardiac events in outpatients,” JACC: Cardiovasc Imaging, vol. 5, no. 10, pp. 990–999, 2012. View at Publisher · View at Google Scholar
  13. I. C. Tsai, B. W. Choi, C. Chan et al., “ASCI 2010 appropriateness criteria for cardiac computed tomography: a report of the Asian Society of Cardiovascular Imaging cardiac computed tomography and cardiac magnetic resonance imaging guideline Working Group,” International Journal of Cardiovascular Imaging, vol. 26, no. 1, pp. 1–15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. K. O. Akosah, A. Schaper, C. Cogbill, and P. Schoenfeld, “Preventing myocardial infarction in the young adult in the first place: how do the national cholesterol education panel III guidelines perform?” Journal of the American College of Cardiology, vol. 41, no. 9, pp. 1475–1479, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Raggi, “Coronary-calcium screening to improve risk stratification in primary prevention,” The Journal of the Louisiana State Medical Society, vol. 154, no. 6, pp. 314–318, 2002. View at Scopus
  16. S. Möhlenkamp, N. Lehmann, P. Greenland, et al., “coronary artery calcium score improves cardiovascular risk prediction in persons without indication for statin therapy,” Atherosclerosis, vol. 215, pp. 229–236, 2011. View at Publisher · View at Google Scholar
  17. S. Möhlenkamp, N. Lehmann, S. Moebus, et al., “quantification of coronary atherosclerosis and inflammation to predict coronary events and all-cause mortality,” American College of Cardiology Foundation, vol. 57, pp. 1455–1464, 2011. View at Publisher · View at Google Scholar
  18. S. Achenbach and P. Raggi, “Imaging of coronary atherosclerosis by computed tomography,” European Heart Journal, vol. 31, no. 12, pp. 1442–1448, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Raggi, T. Q. Callister, B. Cooil et al., “Identification of patients at increased risk of first unheralded acute myocardial infarction by electron-beam computed tomography,” Circulation, vol. 101, no. 8, pp. 850–855, 2000. View at Scopus
  20. M. J. Pletcher, J. A. Tice, M. Pignone, and W. S. Browner, “Using the coronary artery calcium score to predict coronary heart disease events: a systematic review and meta-analysis,” Archives of Internal Medicine, vol. 164, no. 12, pp. 1285–1292, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. M. J. Budoff, R. L. McClelland, K. Nasir et al., “Cardiovascular events with absent or minimal coronary calcification: the Multi-Ethnic Study of Atherosclerosis (MESA),” American Heart Journal, vol. 158, no. 4, pp. 554–561, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Haberl, A. Becker, A. Leber et al., “Correlation of coronary calcification and angiographically documented stenoses in patients with suspected coronary artery disease: results of 1,764 patients,” Journal of the American College of Cardiology, vol. 37, no. 2, pp. 451–457, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. D. V. Anand, E. Lim, D. Hopkins et al., “Risk stratification in uncomplicated type 2 diabetes: prospective evaluation of the combined use of coronary artery calcium imaging and selective myocardial perfusion scintigraphy,” European Heart Journal, vol. 27, no. 6, pp. 713–721, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. M. J. Budoff, G. A. Diamond, P. Raggi et al., “Continuous probabilistic prediction of angiographically significant coronary artery disease using electron beam tomography,” Circulation, vol. 105, no. 15, pp. 1791–1796, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Schmermund, K. R. Bailey, J. A. Rumberger, J. E. Reed, P. F. Sheedy, and R. S. Schwartz, “An algorithm for noninvasive identification of angiographic three- vessel and/or left main coronary artery disease in symptomatic patients on the basis of cardiac risk and electron-beam computed tomographic calcium scores,” Journal of the American College of Cardiology, vol. 33, no. 2, pp. 444–452, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Wexler, B. Brundage, J. Crouse et al., “Coronary artery calcification: pathophysiology, epidemiology, imaging methods, and clinical implications. A statement for health professionals from the American Heart Association,” Circulation, vol. 94, no. 5, pp. 1175–1192, 1996. View at Scopus
  27. J. A. Rumberger, D. B. Simons, L. A. Fitzpatrick, P. F. Sheedy, and R. S. Schwartz, “Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area: a histopathologic correlative study,” Circulation, vol. 92, no. 8, pp. 2157–2162, 1995. View at Scopus
  28. A. Sarwar, L. J. Shaw, M. D. Shapiro et al., “Diagnostic and prognostic value of absence of coronary artery calcification,” JACC: Cardiovascular Imaging, vol. 2, no. 6, pp. 675–688, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Rubinshtein, T. Gaspar, D. A. Halon, J. Goldstein, N. Peled, and B. S. Lewis, “Prevalence and extent of obstructive coronary artery disease in patients with zero or low calcium score undergoing 64-slice cardiac multidetector computed tomography for evaluation of a chest pain syndrome,” American Journal of Cardiology, vol. 99, no. 4, pp. 472–475, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Motoyama, M. Sarai, H. Harigaya et al., “Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome,” Journal of the American College of Cardiology, vol. 54, no. 1, pp. 49–57, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Abdulla, K. S. Pedersen, M. Budoff, and K. F. Kofoed, “Influence of coronary calcification on the diagnostic accuracy of 64-slice computed tomography coronary angiography: a systematic review and meta-analysis,” The International Journal of Cardiovascular Imaging, vol. 28, pp. 943–953, 2011.