About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 472626, 11 pages
http://dx.doi.org/10.1155/2013/472626
Research Article

Characterization of Antibiotic-Loaded Alginate-Osa Starch Microbeads Produced by Ionotropic Pregelation

1Escola de Química, Universidade Federal do Rio de Janeiro, 21949-900 Rio de Janeiro, RJ, Brazil
2Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Urca, RJ, Brazil

Received 22 October 2012; Accepted 2 May 2013

Academic Editor: Subrata Sinha

Copyright © 2013 Gizele Cardoso Fontes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Barreiro, J. F. Martín, and C. Garcia-Estrada, “Proteomics shows new faces for the old penicillin producer Penicillium crrysogenum,” Journal of Biomedicine and Biotechnology, vol. 2012, pp. 1–15, 2012.
  2. Z. M. A. Meira, E. M. A. Goulart, E. A. Colosimo, and C. C. C. Mota, “Long term follow up of rheumatic fever and predictors of severe rheumatic valvar disease in Brazilian children and adolescents,” Heart, vol. 91, no. 8, pp. 1019–1022, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. N. S. Santos-Magalhães, A. Pontes, V. M. W. Pereira, and M. N. P. Caetano, “Colloidal carriers for benzathine penicillin G: nanoemulsions and nanocapsules,” International Journal of Pharmaceutics, vol. 208, no. 1-2, pp. 71–80, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Yang and S. T. Lopina, “Penicillin V-conjugated PEG-PAMAM star polymers,” Journal of Biomaterials Science, Polymer Edition, vol. 14, no. 10, pp. 1043–1056, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Khoee and M. Yaghoobian, “An investigation into the role of surfactants in controlling particle size of polymeric nanocapsules containing penicillin-G in double emulsion,” European Journal of Medicinal Chemistry, vol. 44, no. 6, pp. 2392–2399, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Turos, G. S. K. Reddy, K. Greenhalgh et al., “Penicillin-bound polyacrylate nanoparticles: restoring the activity of β-lactam antibiotics against MRSA,” Bioorganic and Medicinal Chemistry Letters, vol. 17, no. 12, pp. 3468–3472, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. J. M. López-Cacho, P. L. González-R, B. Talero, A. M. Rabasco, and M. L. González-Rodrigues, “Robust optimization of alginate-carbopol 940 bead formulations,” The Scientific World Journal, vol. 2012, pp. 1–15, 2012.
  8. M. Davidovich-Pinhas and H. Bianco-Peled, “Physical and structural characteristics of acrylated poly(ethylene glycol)-alginate conjugates,” Acta Biomaterialia, vol. 7, no. 7, pp. 2817–2825, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. D. R. Lu, C. M. Xiao, and S. J. Xu, “Starch-based completely biodegradable polymer materials,” Express Polymer Letters, vol. 3, no. 6, pp. 366–375, 2009.
  10. D. S. Bastos, K. G. L. Araújo, and M. H. M. Rocha-Leão, “Ascorbic acid retaining using a new calcium alginate-Capsul based edible film,” Journal of Microencapsulation, vol. 26, no. 2, pp. 97–103, 2009.
  11. G. C. Fontes, P. V. Finotelli, A. M. Rossi, and M. H. M. Rocha-Leão, “Optimization of penicillin G microencapsulation with OSA starch by factorial design,” Chemical Engineering Transactions, vol. 27, pp. 85–90, 2012.
  12. T. P. Hadjiioannou, G. D. Christian, M. A. Koupparis, and P. E. Macheras, Quantitative Calculations in Pharmaceutical Practice and Research, VCH Publishers, New York, NY, USA, 1993.
  13. D. W. Bourne, Pharmacokinetics, in Modern Pharmaceutics, Marcel Dekker, New York, NY, USA, 4th edition, 2002.
  14. T. Higuchi, “Mechanism of sustained-action medication. theoretical analysis of rate,” Journal of Pharmaceutical Sciences, vol. 52, pp. 1145–1149, 1963. View at Scopus
  15. R. W. Baker and H. S. Lonsdale, “Controled release: mechanisms and rates,” in Controlled Release of Biologically Active Agents, A. C. Taquary and R. E. Lacey, Eds., pp. 15–17, Plenum Press, New York, NY, USA, 1974.
  16. R. W. Korsmeyer, R. Gurny, and E. Doelker, “Mechanisms of solute release from porous hydrophilic polymers,” International Journal of Pharmaceutics, vol. 15, no. 1, pp. 25–35, 1983. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Rajendran and S. K. Basu, “Alginate-chitosan particulate system for sustained release of nimodipine,” Tropical Journal of Pharmaceutical Research, vol. 8, no. 5, pp. 433–440, 2009. View at Scopus
  18. X. Liu, W. Xue, Q. Liu et al., “Swelling behaviour of alginate-chitosan microcapsules prepared by external gelation or internal gelation technology,” Carbohydrate Polymers, vol. 56, no. 4, pp. 459–464, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. U. A. Shinde and M. S. Nagarsenker, “Characterization of gelatin-sodium alginate complex coacervation system,” Indian Journal of Pharmaceutical Sciences, vol. 71, no. 3, pp. 313–317, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. K. C. Huber and J. N. BeMiller, “Modified starch,” in Starches: Characterization, Properties, and Applications, A. Bertolini, Ed., pp. 145–203, CRC Press, New York, NY, USA, 2009.
  21. G. Pasparakis and N. Bouropoulos, “Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate-chitosan beads,” International Journal of Pharmaceutics, vol. 323, no. 1-2, pp. 34–42, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. A. S. Hoffman, “Hydrogels for biomedical applications,” Advanced Drug Delivery Reviews, vol. 43, pp. 3–12, 2002.
  23. M. Davidovich-Pinhas and H. Bianco-Peled, “A quantitative analysis of alginate swelling,” Carbohydrate Polymers, vol. 79, no. 4, pp. 1020–1027, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. E. M. Zactiti and T. G. Kieckbusch, “Potassium sorbate permeability in biodegradable alginate films: effect of the antimicrobial agent concentration and crosslinking degree,” Journal of Food Engineering, vol. 77, no. 3, pp. 462–467, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Kiortsis, K. Kachrimanis, T. Broussali, and S. Malamataris, “Drug release from tableted wet granulations comprising cellulosic (HPMC or HPC) and hydrophobic component,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 59, no. 1, pp. 73–83, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Saša, P. Odon, S. Stane, and K. Julijana, “Analysis of surface properties of cellulose ethers and drug release from their matrix tablets,” European Journal of Pharmaceutical Sciences, vol. 27, no. 4, pp. 375–383, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. Q. Wang, X. Hu, Y. Du, and J. F. Kennedy, “Alginate/starch blend fibers and their properties for drug controlled release,” Carbohydrate Polymers, vol. 82, no. 3, pp. 842–847, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Yang, L. Zhang, T. Peng, and W. Zhong, “Effects of Ca2+ bridge cross-linking on structure and pervaporation of cellulose/alginate blend membranes,” Journal of Membrane Science, vol. 175, no. 1, pp. 53–60, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Tukomane, P. Leerapongnun, S. Shobsngob, and S. Varavinit, “Preparation and characterization of annealed-enzymatically hydrolyzed tapioca starch and the utilization in tableting,” Starch/Staerke, vol. 59, no. 1, pp. 33–45, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Schoubben, P. Blasi, S. Giovagnoli, C. Rossi, and M. Ricci, “Development of a scalable procedure for fine calcium alginate particle preparation,” Chemical Engineering Journal, vol. 160, no. 1, pp. 363–369, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Mimmo, C. Marzadori, D. Montecchio, and C. Gessa, “Characterisation of Ca- and Al-pectate gels by thermal analysis and FT-IR spectroscopy,” Carbohydrate Research, vol. 340, no. 16, pp. 2510–2519, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Segura-Campos, L. Chel-Guerrero, and D. Betancur-Ancona, “Synthesis and partial characterization of octenylsuccinic starch from Phaseolus lunatus,” Food Hydrocolloids, vol. 22, no. 8, pp. 1467–1474, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. J. P. Soares, J. E. Santos, G. O. Chierice, and E. T. G. Cavalheiro, “Thermal behavior of alginic acid and its sodium salt,” Ecletica Quimica, vol. 29, no. 2, pp. 57–63, 2004. View at Scopus
  34. H. A. Schneider, “Conformational entropy contributions to the glass temperature of blends of miscible polymers,” Journal of Research of the National Institute of Standards and Technology, vol. 102, no. 2, pp. 229–248, 1997.
  35. M. J. Brekner, H. A. Schneider, and H. J. Cantow, “Approach to the composition dependence of the glass transition temperature of compatible polymer blends: 1,” Polymer, vol. 29, no. 1, pp. 78–85, 1988. View at Scopus
  36. J. F. Mano, D. Koniarova, and R. L. Reis, “Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability,” Journal of Materials Science, vol. 14, no. 2, pp. 127–135, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. J. M. Fang, P. A. Fowler, C. Sayers, and P. A. Williams, “The chemical modification of a range of starches under aqueous reaction conditions,” Carbohydrate Polymers, vol. 55, pp. 283–289, 2004.
  38. X. Song, G. He, H. Ruan, and Q. Chen, “Preparation and properties of octenyl succinic anhydride modified early indica rice starch,” Starch/Staerke, vol. 58, no. 2, pp. 109–117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. P. S. Kalsi, Spectroscopy of Organic Compounds, John Wiley & Sons; Asia, 1995.