About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 474272, 9 pages
http://dx.doi.org/10.1155/2013/474272
Research Article

Licochalcone A-Induced Human Bladder Cancer T24 Cells Apoptosis Triggered by Mitochondria Dysfunction and Endoplasmic Reticulum Stress

1Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, China
2Binzhou Medical College, Yantai, Shandong 264000, China
3Life Science School, Yantai University, Yantai, Shandong 264000, China

Received 12 April 2013; Revised 3 June 2013; Accepted 3 June 2013

Academic Editor: Thomas Liehr

Copyright © 2013 Xuan Yuan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Zieger, “High throughput molecular diagnostics in bladder cancer—on the brink of clinical utility,” Molecular Oncology, vol. 1, no. 4, pp. 384–394, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” CA: A Cancer Journal for Clinicians, vol. 55, no. 2, pp. 74–108, 2005. View at Scopus
  3. P. E. Clark, “Bladder cancer,” Current Opinion in Oncology, vol. 19, no. 3, pp. 241–247, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Pichu, S. Krishnamoorthy, A. Shishkov, B. Zhang, P. McCue, and B. C. Ponnappa, “Knockdown of Ki-67 by dicer-substrate small interfering RNA sensitizes bladder cancer cells to curcumin-induced tumor inhibition,” PLoS ONE, vol. 7, no. 11, Article ID e48567, 2012. View at Publisher · View at Google Scholar
  5. W. Tan, J. Lu, M. Huang et al., “Anti-cancer natural products isolated from chinese medicinal herbs,” Chinese Medicine, vol. 6, article 27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Gerl and D. L. Vaux, “Apoptosis in the development and treatment of cancer,” Carcinogenesis, vol. 26, no. 2, pp. 263–270, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Gosslau and K. Y. Chen, “Nutraceuticals, apoptosis, and disease prevention,” Nutrition, vol. 20, no. 1, pp. 95–102, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Böhm and H. Schild, “Apoptosis: the complex scenario for a silent cell death,” Molecular Imaging and Biology, vol. 5, no. 1, pp. 2–14, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Moungjaroen, U. Nimmannit, P. S. Callery et al., “Reactive oxygen species mediate caspase activation and apoptosis induced by lipoic acid in human lung epithelial cancer cells through Bcl-2 down-regulation,” Journal of Pharmacology and Experimental Therapeutics, vol. 319, no. 3, pp. 1062–1069, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Ott, V. Gogvadze, S. Orrenius, and B. Zhivotovsky, “Mitochondria, oxidative stress and cell death,” Apoptosis, vol. 12, no. 5, pp. 913–922, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Klamt, F. Dal-Pizzol, M. L. C. da Frota Jr. et al., “Imbalance of antioxidant defense in mice lacking cellular prion protein,” Free Radical Biology and Medicine, vol. 30, no. 10, pp. 1137–1144, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Ermak and K. J. A. Davies, “Calcium and oxidative stress: from cell signaling to cell death,” Molecular Immunology, vol. 38, no. 10, pp. 713–721, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Shankar and R. K. Srivastava, “Involvement of Bcl-2 family members, phosphatidylinositol 3′-kinase/AKT and mitochondrial p53 in curcumin (diferulolylmethane)-induced apoptosis in prostate cancer,” International Journal of Oncology, vol. 30, no. 4, pp. 905–918, 2007. View at Scopus
  14. S. Azam, N. Hadi, N. U. Khan, and S. M. Hadi, “Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate: implications for anticancer properties,” Toxicology In Vitro, vol. 18, no. 5, pp. 555–561, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Fujisawa and Y. Kadoma, “Anti- and pro-oxidant effects of oxidized quercentin, curcumin or curcumin-related compounds with thiols or ascorbate as measured by the induction period method,” In Vivo, vol. 20, no. 1, pp. 39–44, 2006. View at Scopus
  16. X. Y. Xiao, M. Hao, X. Y. Yang et al., “Licochalcone A inhibits growth of gastric cancer cells by arresting cell cycle progression and inducing apoptosis,” Cancer Letters, vol. 302, no. 1, pp. 69–75, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Y. Yo, G. S. Shieh, K. F. Hsu, C. L. Wu, and A. L. Shiau, “Licorice and licochalcone-a induce autophagy in lncap prostate cancer cells by suppression of bcl-2 expression and the mtor pathway,” Journal of Agricultural and Food Chemistry, vol. 57, no. 18, pp. 8266–8273, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. K. Kim, E. K. Shin, J. H. Park, Y. H. Kim, and J. H. Y. Park, “Antitumor and antimetastatic effects of licochalcone A in mouse models,” Journal of Molecular Medicine, vol. 88, no. 8, pp. 829–838, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983. View at Scopus
  20. J. I. Jung, S. S. Lim, H. J. Choi et al., “Isoliquiritigenin induces apoptosis by depolarizing mitochondrial membranes in prostate cancer cells,” Journal of Nutritional Biochemistry, vol. 17, no. 10, pp. 689–696, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Yuan, B. Zhang, N. Chen et al., “Isoliquiritigenin treatment induces apoptosis by increasing intracellular ROS levels in HeLa cells,” Journal of Asian Natural Products Research, vol. 14, no. 8, pp. 789–798, 2012. View at Publisher · View at Google Scholar
  22. X. Yuan, B. Yu, Y. Wang et al., “Involvement of endoplasmic reticulum stress in isoliquiritigenin-induced SKOV-3 cell apoptosis,” Recent Patents on Anti-Cancer Drug Discovery, vol. 8, no. 2, pp. 191–199, 2013.
  23. D. Hockenbery, G. Nunez, C. Milliman, R. D. Schreiber, and S. J. Korsmeyer, “Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death,” Nature, vol. 348, no. 6299, pp. 334–336, 1990. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Reers, T. W. Smith, and L. B. Chen, “J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential,” Biochemistry, vol. 30, no. 18, pp. 4480–4486, 1991. View at Scopus
  25. S. T. Smiley, M. Reers, C. Mottola-Hartshorn et al., “Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 9, pp. 3671–3675, 1991. View at Scopus
  26. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. L. F. Zerbini, R. E. Tamura, R. G. Correa et al., “Combinatorial effect of non-steroidal anti-inflammatory drugs and NF-κB inhibitors in ovarian cancer therapy,” PLoS ONE, vol. 6, no. 9, Article ID e24285, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. M. O. Hengartner, “The biochemistry of apoptosis,” Nature, vol. 407, no. 6805, pp. 770–776, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. J. M. Brown and B. G. Wouters, “Apoptosis, p53, and tumor cell sensitivity to anticancer agents,” Cancer Research, vol. 59, no. 7, pp. 1391–1399, 1999. View at Scopus
  30. C. K. Lee, S. H. Son, K. K. Park et al., “Licochalcone a inhibits the growth of colon carcinoma and attenuates cisplatin-induced toxicity without a loss of chemotherapeutic efficacy in mice,” Basic and Clinical Pharmacology and Toxicology, vol. 103, no. 1, pp. 48–54, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. M. M. Rafi, R. T. Rosen, A. Vassil et al., “Modulation of bcl-2 and cytotoxicity by licochalcone-A, a novel estrogenic flavonoid,” Anticancer Research, vol. 20, no. 4, pp. 2653–2658, 2000. View at Scopus
  32. M. Rottner, S. Tual-Chalot, H. A. Mostefai, R. Andriantsitohaina, J. Freyssinet, and M. C. Martínez, “Increased oxidative stress induces apoptosis in human cystic fibrosis cells,” PLoS ONE, vol. 6, no. 9, Article ID e24880, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Jastroch, “Unraveling the molecular machinery that promotes pancreatic β-cell dysfunction during oxidative stress: focus on ‘phagocyte-like NADPH oxidase promotes cytokine-induced mitochondrial dysfunction in pancreatic β-cells: evidence for regulation by Rac1’,” The American Journal of Physiology, vol. 300, no. 1, pp. R9–R11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Ron and P. Walter, “Signal integration in the endoplasmic reticulum unfolded protein response,” Nature Reviews Molecular Cell Biology, vol. 8, no. 7, pp. 519–529, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Hetz, “The unfolded protein response: controlling cell fate decisions under ER stress and beyond,” Nature Reviews Molecular Cell Biology, vol. 13, no. 2, pp. 89–102, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. D. G. Breckenridge, M. Germain, J. P. Mathai, M. Nguyen, and G. C. Shore, “Regulation of apoptosis by endoplasmic reticulum pathways,” Oncogene, vol. 22, no. 53, pp. 8608–8618, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. I. L. Hsin, Y. C. Hsiao, M. F. Wu et al., “Lipocalin 2, a new GADD153 target gene, as an apoptosis inducer of endoplasmic reticulum stress in lung cancer cells,” Toxicology and Applied Pharmacology, vol. 263, no. 3, pp. 330–337, 2012. View at Publisher · View at Google Scholar
  38. J. Wang, X. Fang, and W. Liang, “Pegylated phospholipid micelles induce endoplasmic reticulum-dependent apoptosis of cancer cells but not normal cells,” The American Chemical Society Nano, vol. 6, no. 6, pp. 5018–5030, 2012. View at Publisher · View at Google Scholar
  39. L. Yuzefovych, G. Wilson, and L. Rachek, “Different effects of oleate versus palmitate on mitochondrial function, apoptosis, and insulin signaling in L6 skeletal muscle cells: role of oxidative stress,” The American Journal of Physiology, vol. 299, no. 6, pp. E1096–E1105, 2010. View at Publisher · View at Google Scholar · View at Scopus