About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 474963, 6 pages
http://dx.doi.org/10.1155/2013/474963
Research Article

Association between Inflammatory Marker, Environmental Lead Exposure, and Glutathione S-Transferase Gene

1Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
2Division of Clinical Pharmacology and Toxicology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
3Office of Research Academic and Innovation, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
4Health Office, Electricity Generating Authority of Thailand, Nonthaburi 11130, Thailand

Received 2 November 2012; Accepted 12 December 2012

Academic Editor: Marija Mostarica-Stojković

Copyright © 2013 Jintana Sirivarasai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A number of studies suggested that lead is related to the induction of oxidative stress, and alteration of immune response. In addition, modifying these toxic effects varied partly by GST polymorphism. The objectives of this study were to assess the association between the lead-induced alteration in serum hs-CRP, with GSTM1, GSTT1, and GSTP1 Val105Ile genetic variations and the health consequence from environmental lead exposure. The 924 blood samples were analyzed for blood lead, CRP, and genotyping of three genes with real-time PCR. Means of blood lead and serum hs-CRP were 5.45 μg/dL and 2.07 mg/L. Both CRP and systolic blood pressure levels were significantly higher for individuals with blood lead in quartile 4 (6.48–24.63 μg/dL) compared with those in quartile 1 (1.23–3.47 μg/dL, ). In particular, in men with blood lead >6.47 μg/dL the adjusted odds ratio (OR) of CRP levels for individuals with GSTP1 variants allele, GSTM1 null, GSTT1 null, double-null GSTM1, and GSTT1 compared with wild-type allele was 1.46 (95% CI; 1.05–2.20), 1.32 (95% CI; 1.03–1.69), 1.65 (95% CI; 1.17–2.35), and 1.98 (95% CI; 1.47–2.55), respectively. Our findings suggested that lead exposure is associated with adverse changes in inflammatory marker and SBP. GST polymorphisms are among the genetic determinants related to lead-induced inflammatory response.