About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 478279, 15 pages
http://dx.doi.org/10.1155/2013/478279
Research Article

Three-Dimensional Supermacroporous Carrageenan-Gelatin Cryogel Matrix for Tissue Engineering Applications

1Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K.K Birla Goa Campus, Goa 403726, India
2Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India

Received 7 April 2013; Revised 11 June 2013; Accepted 12 June 2013

Academic Editor: Guoping Chen

Copyright © 2013 Archana Sharma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Sachlos, J. T. Czernuszka, S. Gogolewski, and M. Dalby, “Making tissue engineering scaffolds work. Review on the application ofsolid freeform fabrication technology to the production of tissue engineeringscaffolds,” European Cells and Materials, vol. 5, pp. 29–40, 2003. View at Scopus
  2. B. B. Mandal and S. C. Kundu, “Cell proliferation and migration in silk fibroin 3D scaffolds,” Biomaterials, vol. 30, no. 15, pp. 2956–2965, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. V. I. Lozinsky, I. Y. Galaev, F. M. Plieva, I. N. Savina, H. Jungvid, and B. Mattiasson, “Polymeric cryogels as promising materials of biotechnological interest,” Trends in Biotechnology, vol. 21, no. 10, pp. 445–451, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Ahlqvist, A. Kumar, H. Sundström et al., “Affinity binding of inclusion bodies on supermacroporous monolithic cryogels using labeling with specific antibodies,” Journal of Biotechnology, vol. 122, no. 2, pp. 216–225, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M. B. Dainiak, A. Kumar, F. M. Plieva, I. Y. Galaev, and B. Mattiasson, “Integrated isolation of antibody fragments from microbial cell culture fluids using supermacroporous cryogels,” Journal of Chromatography A, vol. 1045, no. 1-2, pp. 93–98, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. M. B. Dainiak, A. Kumar, I. Y. Galaev, and B. Mattiasson, “Detachment of affinity-captured bioparticles by deformation of a macroporous hydrogel,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 4, pp. 849–854, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Jain and A. Kumar, “Designing supermacroporous cryogels based on polyacrylonitrile and a polyacrylamide-chitosan semi-interpenetrating network,” Journal of Biomaterials Science, Polymer Edition, vol. 20, no. 7-8, pp. 877–902, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Kumar and A. Bhardwaj, “Methods in cell separation for biomedical application: cryogels as a new tool,” Biomedical Materials, vol. 3, no. 3, Article ID 034008, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Kumar, V. Bansal, J. Andersson, P. K. Roychoudhury, and B. Mattiasson, “Supermacroporous cryogel matrix for integrated protein isolation: immobilized metal affinity chromatographic purification of urokinase from cell culture broth of a human kidney cell line,” Journal of Chromatography A, vol. 1103, no. 1, pp. 35–42, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. V. I. Lozinsky, F. M. Plieva, I. Y. Galaev, and B. Mattiasson, “The potential of polymeric cryogels in bioseparation,” Bioseparation, vol. 10, no. 4-5, pp. 163–188, 2001. View at Scopus
  11. A. Kumar, V. Bansal, K. S. Nandakumar et al., “Integrated bioprocess for the production and isolation of urokinase from animal cell culture using supermacroporous cryogel matrices,” Biotechnology and Bioengineering, vol. 93, no. 4, pp. 636–646, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Tripathi, N. Kathuria, and A. Kumar, “Elastic and macroporous agarose-gelatin cryogels with isotropic and anisotropic porosity for tissue engineering,” Journal of Biomedical Materials Research A, vol. 90, no. 3, pp. 680–694, 2009. View at Scopus
  13. A. Srivastava, E. Jain, and A. Kumar, “The physical characterization of supermacroporous poly(N-isopropylacrylamide) cryogel: mechanical strength and swelling/de-swelling kinetics,” Materials Science and Engineering A, vol. 464, no. 1-2, pp. 93–100, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Tripathi and A. Kumar, “Multi-featured macroporous agarose-alginate cryogel: synthesis and characterization for bioengineering applications,” Macromolecular Bioscience, vol. 11, no. 1, pp. 22–35, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Bhat, A. Tripathi, and A. Kumar, “Supermacroprous chitosan-agarose-gelatin cryogels: in vitro characterization and in vivo assessment for cartilage tissue engineering,” Journal of the Royal Society Interface, vol. 8, no. 57, pp. 540–554, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Jain, A. Srivastava, and A. Kumar, “Macroporous interpenetrating cryogel network of poly(acrylonitrile) and gelatin for biomedical applications,” Journal of Materials Science, vol. 20, no. 1, pp. S173–S179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Kathuria, A. Tripathi, K. K. Kar, and A. Kumar, “Synthesis and characterization of elastic and macroporous chitosan-gelatin cryogels for tissue engineering,” Acta Biomaterialia, vol. 5, no. 1, pp. 406–418, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Kumar, A. Rodríguez-Caballero, F. M. Plieva et al., “Affinity binding of cells to cryogel adsorbents with immobilized specific ligands: effect of ligand coupling and matrix architecture,” Journal of Molecular Recognition, vol. 18, no. 1, pp. 84–93, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Kumar, F. M. Plieva, I. Y. Galaev, and B. Mattiasson, “Affinity fractionation of lymphocytes using a monolithic cryogel,” Journal of Immunological Methods, vol. 283, no. 1-2, pp. 185–194, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Mattiasson, I. Yu. Galaev, A. Kumar, and M. B. Dainiak, “Process for adsorption- based separation of bioparticles from an aqueous suspension,” PCT/SE 000556, 2006.
  21. S. Nilsang, K. S. Nandakumar, I. Y. Galaev et al., “Monoclonal antibody production using a new supermacroporous cryogel bioreactor,” Biotechnology Progress, vol. 23, no. 4, pp. 932–939, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. Y.-M. Lim, H.-J. Gwon, J.-H. Choi et al., “Preparation and biocompatibility study of gelatin/kappa-carrageenan scaffolds,” Macromolecular Research, vol. 18, no. 1, pp. 29–34, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. A. L. Daniel-Da-Silva, A. B. Lopes, A. M. Gil, and R. N. Correia, “Synthesis and characterization of porous κ-carrageenan/calcium phosphate nanocomposite scaffolds,” Journal of Materials Science, vol. 42, no. 20, pp. 8581–8591, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Bornhöft, M. Thommes, and P. Kleinebudde, “Preliminary assessment of carrageenan as excipient for extrusion/spheronisation,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 59, no. 1, pp. 127–131, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Naim, B. Samuel, B. Chauhan, and A. Paradkar, “Effect of potassium chloride and cationic drug on swelling, erosion and release from kappa-carrageenan matrices,” AAPS PharmSciTech, vol. 5, no. 2, article e25, 2004. View at Scopus
  26. A. Patel and K. Mequanint, “Novel physically crosslinked polyurethane-block-poly(vinyl pyrrolidone) hydrogel biomaterials,” Macromolecular Bioscience, vol. 7, no. 5, pp. 727–737, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. J. S. Mao, L. G. Zhao, Y. J. Yin, and K. D. Yao, “Structure and properties of bilayer chitosan-gelatin scaffolds,” Biomaterials, vol. 24, no. 6, pp. 1067–1074, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Li and A. F. T. Mak, “Hydraulic permeability of polyglycolic acid scaffolds as a function of biomaterial degradation,” Journal of Biomaterials Applications, vol. 19, no. 3, pp. 253–266, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Prasad, Y. Kaneko, and J.-I. Kadokawa, “Novel gelling systems of κ-, ι- and λ-carrageenans and their composite gels with cellulose using ionic liquid,” Macromolecular Bioscience, vol. 9, no. 4, pp. 376–382, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Bhat and A. Kumar, “Cell proliferation on three-dimensional chitosan-agaorose-gelatin cryogel scaffolds for tissue engineering applications,” Journal of Bioscience and Bioengineering, vol. 114, no. 6, pp. 663–670, 2012.
  31. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983. View at Scopus
  32. J. M. Lee, H. H. L. Edwards, C. A. Pereira, and S. I. Samii, “Crosslinking of tissue-derived biomaterials in 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC),” Journal of Materials Science, vol. 7, no. 9, pp. 531–541, 1996. View at Scopus
  33. S.-N. Park, J.-C. Park, H. O. Kim, M. J. Song, and H. Suh, “Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking,” Biomaterials, vol. 23, no. 4, pp. 1205–1212, 2002. View at Publisher · View at Google Scholar · View at Scopus