About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 478410, 10 pages
http://dx.doi.org/10.1155/2013/478410
Research Article

An Efficient Ensemble Learning Method for Gene Microarray Classification

Department of Computer Engineering, Islamic Azad University, Dezful Branch, Dezful 313, Iran

Received 30 April 2013; Accepted 12 July 2013

Academic Editor: Arnout Voet

Copyright © 2013 Alireza Osareh and Bita Shadgar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. O. Brown and D. Botstein, “Exploring the new world of the genome with DNA microarrays,” Nature Genetics, vol. 21, no. 1, pp. 33–37, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Quackenbush, “Microarray data normalization and transformation,” Nature Genetics, vol. 32, no. 5, pp. 496–501, 2002. View at Scopus
  3. J. Khan, J. S. Wei, M. Ringnér et al., “Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks,” Nature Medicine, vol. 7, no. 6, pp. 673–679, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Bhaskar, D. C. Hoyle, and S. Singh, “Machine learning in bioinformatics: a brief survey and recommendations for practitioners,” Computers in Biology and Medicine, vol. 36, no. 10, pp. 1104–1125, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. U. Alon, N. Barka, D. A. Notterman et al., “Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 12, pp. 6745–6750, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. L. J. Van't Veer, H. Dai, M. J. Van de Vijver et al., “Gene expression profiling predicts clinical outcome of breast cancer,” Nature, vol. 415, no. 6871, pp. 530–536, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Blanco, P. Larrañaga, I. Inza, and B. Sierra, “Gene selection for cancer classification using wrapper approaches,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 18, no. 8, pp. 1373–1390, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Cho and H. Won, “Machine learning in DNA microarray analysis for cancer classification,” in Proceedings of the 1st Asia-Pacific Bioinformatics Conference on Bioinformatics, pp. 189–198, 2003.
  9. M. P. S. Brown, W. N. Grundy, D. Lin et al., “Knowledge-based analysis of microarray gene expression data by using support vector machines,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 1, pp. 262–267, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer, and D. Haussler, “Support vector machine classification and validation of cancer tissue samples using microarray expression data,” Bioinformatics, vol. 16, no. 10, pp. 906–914, 2000. View at Scopus
  11. N. Friedman, M. Linial, I. Nachman, and D. Pe'er, “Using Bayesian networks to analyze expression data,” in Proceedings of the 4th Annual International Conference on Computational Molecular Biology (RECOMB '00), pp. 127–135, April 2000. View at Scopus
  12. G. J. Gordon, R. V. Jensen, L.-L. Hsiao et al., “Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma,” Cancer Research, vol. 62, no. 17, pp. 4963–4967, 2002. View at Scopus
  13. X. Wang, M. J. Hessner, Y. Wu, N. Pati, and S. Ghosh, “Quantitatative quality control in microarray experiments and the application in data filtering, normalization and false positive rate prediction,” Bioinformatics, vol. 19, no. 11, pp. 1341–1347, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Peng, “A novel ensemble machine learning for robust microarray data classification,” Computers in Biology and Medicine, vol. 36, no. 6, pp. 553–573, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Dietterich, “Ensemble methods in machine learning,” in Proceedings of the Multiple Classifier System Conference, pp. 1–15, 2000.
  16. T. G. Dietterich, “An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization,” Machine Learning, vol. 40, no. 2, pp. 139–157, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Yang, Y. H. Yang, B. B. Zhou, and A. Y. Zomaya, “A review of ensemble methods in bioinformatics,” Current Bioinformatics, vol. 5, no. 4, pp. 296–308, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 10, pp. 993–1001, 1990. View at Publisher · View at Google Scholar · View at Scopus
  19. C.-X. Zhang and J.-S. Zhang, “RotBoost: a technique for combining rotation forest and adaboost,” Pattern Recognition Letters, vol. 29, no. 10, pp. 1524–1536, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. C.-X. Zhang and J.-S. Zhang, “A variant of rotation forest for constructing ensemble classifiers,” Pattern Analysis and Applications, vol. 13, no. 1, pp. 59–77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. K. W. De Bock, K. Coussement, and D. Van den Poel, “Ensemble classification based on generalized additive models,” Computational Statistics and Data Analysis, vol. 54, no. 6, pp. 1535–1546, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. K.-H. Liu and D.-S. Huang, “Cancer classification using Rotation Forest,” Computers in Biology and Medicine, vol. 38, no. 5, pp. 601–610, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” Journal of Computer and System Sciences, vol. 55, no. 1, pp. 119–139, 1997. View at Scopus
  24. L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123–140, 1996. View at Scopus
  25. L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. S.-I. Lee and S. Batzoglou, “Application of independent component analysis to microarrays,” Genome Biology, vol. 4, no. 11, article r76, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, “Face recognition by independent component analysis,” IEEE Transactions on Neural Networks, vol. 13, no. 6, pp. 1450–1464, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Mitra, C. A. Murthy, and S. K. Pal, “Unsupervised feature selection using feature similarity,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 3, pp. 301–312, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. C.-H. Yang, L.-Y. Chuang, and C.-H. Yang, “IG-GA: a hybrid filter/wrapper method for feature selection of microarray data,” Journal of Medical and Biological Engineering, vol. 30, no. 1, pp. 23–28, 2010. View at Scopus
  30. L. Yu and H. Liu, “Efficient feature selection via analysis of relevance and redundancy,” Journal of Machine Learning Research, vol. 5, no. 12, pp. 1205–1224, 2004.
  31. Z. Zhu, Y.-S. Ong, and M. Dash, “Markov blanket-embedded genetic algorithm for gene selection,” Pattern Recognition, vol. 40, no. 11, pp. 3236–3248, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Li, C. Zhang, and M. Ogihara, “A comparative study of feature selection and multiclass classfication methods for tissue classification based on gene expression,” Bioinformatics, vol. 20, no. 15, pp. 2429–2437, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. I. Kononenko, “Estimating attributes: analysis and extensions of RELIEF,” in Proceedings of the European Conference on Machine Learning, pp. 171–182, 1994.
  34. K. Kira and L. Rendell, “A practical approach to feature selection,” in Proceedings of the 9th International Workshop on Machine Learning, pp. 249–256, 1992.
  35. V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos, “An ensemble of filters and classifiers for microarray data classification,” Pattern Recognition, vol. 45, no. 1, pp. 531–539, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Ding and H. Peng, “Minimum redundancy feature selection from microarray gene expression data,” in Proceedings of the 2nd IEEE Computational Systems Bioinformatics, pp. 523–528, 2003.
  37. L. Kuncheva and J. Rodriguez, “An experimental study on rotation forest ensembles,” in Multiple Classifier Systems, vol. 4472 of Lecture Notes on Computer Science, pp. 459–468, 2007.
  38. C. Ambroise and G. J. McLachlan, “Selection bias in gene extraction on the basis of microarray gene-expression data,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 10, pp. 6562–6566, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. U. M. Braga-Neto and E. R. Dougherty, “Is cross-validation valid for small-sample microarray classification?” Bioinformatics, vol. 20, no. 3, pp. 374–380, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Margineantu and T. Detterich, “Pruning adaptive boosting,” in Proceedings of the 14th International Conference of Machine Learning, pp. 378–387, 1997.
  41. L. Kuncheva, Combining Pattern Classifiers, John Wiley & Sons, 2004.