About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 478713, 13 pages
http://dx.doi.org/10.1155/2013/478713
Research Article

Epithelial Cell Culture from Human Adenoids: A Functional Study Model for Ciliated and Secretory Cells

1Department of Otorhinolaryngology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 350, 2°Piso, Santiago 8330033, Chile
2Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile

Received 9 August 2012; Revised 16 November 2012; Accepted 19 November 2012

Academic Editor: Anton M. Jetten

Copyright © 2012 Claudia González et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Sleigh, J. R. Blake, and N. Liron, “The propulsion of mucus by cilia,” American Review of Respiratory Disease, vol. 137, no. 3, pp. 726–741, 1988. View at Scopus
  2. N. A. Cohen, “Sinonasal mucociliary clearance in health and disease,” Annals of Otology, Rhinology, and Laryngology, vol. 196, pp. 20–26, 2006.
  3. L. Gheber, Z. Priel, C. Aflalo, and V. Shoshan-Barmatz, “Extracellular ATP binding proteins as potential receptors in mucociliary epithelium: characterization using [32P]3'-O-(4-benzoyl)benzoyl ATP, a photoaffinity label,” Journal of Membrane Biology, vol. 147, no. 1, pp. 83–93, 1995. View at Scopus
  4. T. Lieb, C. W. Frei, J. I. Frohock, R. J. Bookman, and M. Salathe, “Prolonged increase in ciliary beat frequency after short-term purinergic stimulation in human airway epithelial cells,” Journal of Physiology, vol. 538, no. 2, pp. 633–646, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. L. B. Wong and D. B. Yeates, “Luminal purinergic regulatory mechanisms of tracheal ciliary beat frequency,” American Journal of Respiratory Cell and Molecular Biology, vol. 7, no. 4, pp. 447–454, 1992. View at Scopus
  6. P. Roger, J. P. Gascard, J. Bara, V. T. De Montpreville, M. Yeadon, and C. Brink, “ATP induced MUC5AC release from human airways in vitro,” Mediators of Inflammation, vol. 9, no. 6, pp. 277–284, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. C. W. Davis, “Regulation of mucin secretion from in vitro celular models,” Novartis Foundation Symposium, vol. 248, pp. 113–131, 2002. View at Publisher · View at Google Scholar
  8. S. H. Donaldson, E. R. Lazarowski, M. Picher, M. R. Knowles, M. J. Stutts, and R. C. Boucher, “Basal nucleotide levels, release, and metabolism in normal and cystic fibrosis airways,” Molecular Medicine, vol. 6, no. 11, pp. 969–982, 2000. View at Scopus
  9. S. H. Donaldson, M. Picher, and R. C. Boucher, “Secreted and cell-associated adenylate kinase and nucleoside diphosphokinase contribute to extracellular nucleotide metabolism on human airway surfaces,” American Journal of Respiratory Cell and Molecular Biology, vol. 26, no. 2, pp. 209–215, 2002. View at Scopus
  10. E. R. Lazarowski, R. C. Boucher, and T. K. Harden, “Constitutive release of ATP and evidence for major contribution of ecto-nucleotide pyrophosphatase and nucleoside diphosphokinase to extracellular nucleotide concentrations,” Journal of Biological Chemistry, vol. 275, no. 40, pp. 31061–31068, 2000. View at Scopus
  11. T. Hayashi, M. Kawakami, S. Sasaki et al., “ATP regulation of ciliary beat frequency in rat tracheal and distal airway epithelium,” Experimental Physiology, vol. 90, no. 4, pp. 535–544, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Morales, N. Barrera, P. Uribe, C. Mora, and M. Villalón, “Functional cross talk after activation of P2 and P1 receptors in oviductal ciliated cells,” American Journal of Physiology-Cell Physiology, vol. 279, no. 3, pp. C658–C669, 2000. View at Scopus
  13. B. Van Der Baan, “Ciliary function,” Acta Oto-Rhino-Laryngologica Belgica, vol. 54, no. 3, pp. 293–298, 2000. View at Scopus
  14. H. W. Hovenberg, J. R. Davies, A. Herrmann, C. J. Lindén, and I. Carlstedt, “MUC5AC, but not MUC2, is a prominent mucin in respiratory secretions,” Glycoconjugate Journal, vol. 13, no. 5, pp. 839–847, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. D. J. Thornton and J. K. Sheehan, “From mucins to mucus: toward a more coherent understanding of this essential barrier,” Proceedings of the American Thoracic Society, vol. 1, no. 1, pp. 54–61, 2004. View at Scopus
  16. C. Wickstrom, J. R. Davies, G. V. Eriksen, E. C. I. Veerman, and I. Carlstedt, “MUC5B is a major gel-forming, oligomeric mucin from human salivary gland, respiratory tract and endocervix: identification of glycoforms and C-terminal cleavage,” Biochemical Journal, vol. 334, no. 3, pp. 685–693, 1998. View at Scopus
  17. C. S. Rhee, Y. G. Min, C. H. Lee et al., “Ciliary beat frequency in cultured human nasal epitelial cells,” Annals of Otology, Rhinology, and Laryngology, vol. 110, no. 11, pp. 1011–1016, 2001.
  18. M. B. Antunes, B. A. Woodworth, G. Bhargave et al., “Murine nasal septa for respiratory epithelial air-liquid interface cultures,” BioTechniques, vol. 43, no. 2, pp. 195–204, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. T. E. Gray, K. Guzman, C. W. Davis, L. H. Abdullah, and P. Nettesheim, “Mucociliary differentiation of serially passaged normal human tracheobronchial epithelial cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 14, no. 1, pp. 104–112, 1996. View at Scopus
  20. P. S. Mason, E. Adam, M. Prior, J. O. Warner, and C. J. Randall, “Effect of bacterial endotoxin and middle ear effusion on ciliary activity: implications for otitis media,” Laryngoscope, vol. 112, no. 4, pp. 676–680, 2002. View at Scopus
  21. B. Yang, R. J. Schlosser, and T. V. McCaffrey, “Dual signal transduction mechanisms modulate ciliary beat frequency in upper airway epithelium,” American Journal of Physiology-Lung Cellular and Molecular Physiology, vol. 270, no. 5, pp. L745–L751, 1996. View at Scopus
  22. B. Yang, R. J. Schlosser, and T. V. McCaffrey, “Signal transduction pathways in modulation of ciliary beat frequency by methacholine,” Annals of Otology, Rhinology and Laryngology, vol. 106, no. 3, pp. 230–236, 1997. View at Scopus
  23. Z. Weisman and J. Sadé, “Tissue culture of human adult adenoids and of middle ear mucosa,” Annals of Otology, Rhinology, and Laryngology, vol. 85, part 1, no. 3, pp. 327–323, 1976.
  24. P. Verdugo, R. E. Rumery, and P. Y. Tam, “Hormonal control of oviductal ciliary activity: effect of prostaglandins,” Fertility and Sterility, vol. 33, no. 2, pp. 193–196, 1980. View at Scopus
  25. N. P. Barrera, B. Morales, and M. Villalón, “Plasma and intracellular membrane inositol 1,4,5-trisphosphate receptors mediate the Ca2+ increase associated with the ATP-induced increase in ciliary beat frequency,” American Journal of Physiology-Cell Physiology, vol. 287, no. 4, pp. C1114–C1124, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Villalon, T. R. Hinds, and P. Verdugo, “Stimulus-response coupling in mammalian ciliated cells. Demonstration of two mechanisms of control for cytosolic [Ca2+],” Biophysical Journal, vol. 56, no. 6, pp. 1255–1258, 1989. View at Scopus
  27. N. P. Barrera, B. Morales, and M. Villalon, “ATP and adenosine trigger the interaction of plasma membrane IP3 receptors with protein kinase A in oviductal ciliated cells,” Biochemical and Biophysical Research Communications, vol. 364, no. 4, pp. 815–821, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Wu, Y. H. Zhao, and M. M. Chang, “Growth and differentiation of conducting airway epithelial cells in culture,” European Respiratory Journal, vol. 10, no. 10, pp. 2398–2403, 1997. View at Publisher · View at Google Scholar
  29. J. V. Small and J. E. Celis, “Filament arrangements in negatively stained cultured cells: the organization of actin,” Cytobiologie, vol. 16, no. 2, pp. 308–325, 1978. View at Scopus
  30. S. B. Ho, K. Takamura, R. Anway, L. L. Shekels, N. W. Toribara, and H. Ota, “The adherent gastric mucous layer is composed of alternating layers of MUC5AC and MUC6 mucin proteins,” Digestive Diseases and Sciences, vol. 49, no. 10, pp. 1598–1606, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Rousseau, C. Wickstrom, D. B. Whitehouse, I. Carlstedt, and D. M. Swallow, “New monoclonal antibodies to non-glycosylated domains of the secreted mucins MUC5B and MUC7,” Hybridoma and Hybridomics, vol. 22, no. 5, pp. 293–299, 2003. View at Scopus
  32. J. K. Sheehan, S. Kirkham, M. Howard et al., “Identification of molecular intermediates in the assembly pathway of the MUC5AC mucin,” Journal of Biological Chemistry, vol. 279, no. 15, pp. 15698–15705, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Chen, Yu Hua Zhao, and R. Wu, “Differential regulation of airway mucin gene expression and mucin secretion by extracellular nucleotide triphosphates,” American Journal of Respiratory Cell and Molecular Biology, vol. 25, no. 4, pp. 409–417, 2001. View at Scopus
  34. M. Kesimer, C. Ehre, K. A. Burns, C. W. Davis, J. K. Sheehan, and R. J. Pickles, “Molecular organization of the mucins and glycocalyx underlying mucus transport over mucosal surfaces of the airways,” Mucosal Immunology. In press. View at Publisher · View at Google Scholar
  35. B. W. T. Yin and K. O. Lloyd, “Molecular cloning of the CA125 ovarian cancer antigen: identification as a new mucin, MUC16,” Journal of Biological Chemistry, vol. 276, no. 29, pp. 27371–27375, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. F. J. Rohlf and R. R. Sokal, Statistical Tables, W. H. Freeman and Company, New York, NY, USA, 1969.
  37. J. K. Sheehan, C. Brazeau, S. Kutay et al., “Physical characterization of the MUC5AC mucin: a highly oligomeric glycoprotein whether isolated from cell culture or in vivo from respiratory mucous secretions,” Biochemical Journal, vol. 347, no. 1, pp. 37–44, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. J. A. Voynow and B. K. Rubin, “Mucins, mucus, and sputum,” Chest, vol. 135, no. 2, pp. 505–512, 2009. View at Publisher · View at Google Scholar
  39. S. M. Gayner and T. V. McCaffrey, “Muscarinic ciliostimulation requires endogenous prostaglandin production,” American Journal of Rhinology, vol. 12, no. 3, pp. 203–207, 1998. View at Scopus
  40. P. J. Schuil, M. Ten Berge, J. M. E. Van Gelder, K. Graamans, and E. H. Huizing, “Substance P and ciliary beat of human upper respiratory cilia in vitro,” Annals of Otology, Rhinology and Laryngology, vol. 104, no. 10, pp. 798–802, 1995. View at Scopus
  41. P. A. Staskowski and T. V. McCaffrey, “Effect of substance P on ciliary beat frequency in human adenoid explants,” Otolaryngology-Head and Neck Surgery, vol. 107, no. 4, pp. 553–557, 1992. View at Scopus
  42. P. J. Schuil, K. Graamans, and E. E. Huizing, “Cell suspension cultures and adenoid epithelium: an assessment of the source of material for human ciliary function experiments in vitro,” Rhinology, vol. 33, no. 2, pp. 66–69, 1995. View at Scopus
  43. D. M. Morse, J. L. Smullen, and C. W. Davis, “Differential effects of UTP, ATP, and adenosine on ciliary activity of human nasal epithelial cells,” American Journal of Physiology-Cell Physiology, vol. 280, no. 6, pp. C1485–C1497, 2001. View at Scopus
  44. L. Zhang and M. J. Sanderson, “Oscillations in ciliary beat frequency and intracellular calcium concentration in rabbit tracheal epithelial cells induced by ATP,” Journal of Physiology, vol. 546, no. 3, pp. 733–749, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. J. K. Sheehan, M. Howard, P. S. Richardson, T. Longwill, and D. J. Thornton, “Physical characterization of a low-charge glycoform of the MUC5B mucin comprising the gel-phase of an asthmatic respiratory mucous plug,” Biochemical Journal, vol. 338, no. 2, pp. 507–513, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Espinosa, G. Noé, C. Troncoso, S. B. Ho, and M. Villalón, “Acidic pH and increasing [Ca2+] reduce the swelling of mucins in primary cultures of human cervical cells,” Human Reproduction, vol. 17, no. 8, pp. 1964–1972, 2002. View at Scopus
  47. P. Verdugo, “Hydration kinetics of exocytosed mucins in cultured secretory cells of the rabbit trachea: a new model,” Ciba Foundation symposium, vol. 109, pp. 212–225, 1984. View at Scopus
  48. B. J. Van Klinken, A. W. C. Einerhand, H. A. Büller, and J. Dekker, “Strategic biochemical analysis of mucins,” Analytical Biochemistry, vol. 265, no. 1, pp. 103–116, 1998. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Roger, J. P. Gascard, J. Bara, V. T. De Montpreville, M. Yeadon, and C. Brink, “ATP induced MUC5AC release from human airways in vitro,” Mediators of Inflammation, vol. 9, no. 6, pp. 277–284, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Okada, L. Zhang, S. Kreda et al., “Coupled nucleotide and mucin hypersecretion from goblet-cell metaplastic human airway epithelium,” American Journal of Respiratory Cell and Molecular Biology, vol. 45, no. 2, pp. 253–260, 2011. View at Publisher · View at Google Scholar