About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 481437, 4 pages
http://dx.doi.org/10.1155/2013/481437
Review Article

Paired Measurements of Paraoxonase 1 and Serum Amyloid A as Useful Disease Markers

1Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi 329-0498, Japan
2Glycation, Oxidation and Disease Laboratory, Touro University-California, Vallejo, CA 94592, USA

Received 30 April 2013; Revised 12 August 2013; Accepted 26 August 2013

Academic Editor: Thomas Schmitz-Rixen

Copyright © 2013 Kazuhiko Kotani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Besler, K. Heinrich, M. Riwanto, T. F. Lüscher, and U. Landmesser, “High-density lipoprotein-mediated anti-atherosclerotic and endothelial-protective effects: a potential novel therapeutic target in cardiovascular disease,” Current Pharmaceutical Design, vol. 16, no. 13, pp. 1480–1493, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. B.-L. Yu, S.-H. Wang, D.-Q. Peng, and S.-P. Zhao, “HDL and immunomodulation: an emerging role of HDL against atherosclerosis,” Immunology and Cell Biology, vol. 88, no. 3, pp. 285–290, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. B. F. Asztalos, M. Tani, and E. J. Schaefer, “Metabolic and functional relevance of HDL subspecies,” Current Opinion in Lipidology, vol. 22, no. 3, pp. 176–185, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Mineo and P. W. Shaul, “Novel biological functions of high-density lipoprotein cholesterol,” Circulation Research, vol. 111, no. 8, pp. 1079–1090, 2012. View at Publisher · View at Google Scholar
  5. M. Navab, G. M. Anantharamaiah, S. T. Reddy, B. J. Van Lenten, and A. M. Fogelman, “HDL as A biomarker, potential therapeutic target, and therapy,” Diabetes, vol. 58, no. 12, pp. 2711–2717, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Bruckert and B. Hansel, “HDL-c is a powerful lipid predictor of cardiovascular diseases,” International Journal of Clinical Practice, vol. 61, no. 11, pp. 1905–1913, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. W. S. Davidson, R. A. G. D. Silva, S. Chantepie, W. R. Lagor, M. J. Chapman, and A. Kontush, “Proteomic analysis of defined hdl subpopulations reveals particle-specific protein clusters: relevance to antioxidative function,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 6, pp. 870–876, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Kontush and M. J. Chapman, “Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities,” Current Opinion in Lipidology, vol. 21, no. 4, pp. 312–318, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. G. A. Coetzee, A. F. Strachan, and D. R. Van Der Westhuyzen, “Serum amyloid a-containing human high density lipoprotein 3. Density, size, and apolipoprotein composition,” The Journal of Biological Chemistry, vol. 261, no. 21, pp. 9644–9651, 1986. View at Scopus
  10. M. I. Mackness, P. N. Durrington, and B. Mackness, “The role of paraoxonase 1 activity in cardiovascular disease: potential for therapeutic intervention,” American Journal of Cardiovascular Drugs, vol. 4, no. 4, pp. 211–217, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Aviram and M. Rosenblat, “Paraoxonases and cardiovascular diseases: pharmacological and nutritional influences,” Current Opinion in Lipidology, vol. 16, no. 4, pp. 393–399, 2005. View at Scopus
  12. N. Tanimoto, Y. Kumon, T. Suehiro et al., “Serum paraoxonase activity decreases in rheumatoid arthritis,” Life Sciences, vol. 72, no. 25, pp. 2877–2885, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Soran, N. N. Younis, V. Charlton-Menys, and P. Durrington, “Variation in paraoxonase-1 activity and atherosclerosis,” Current Opinion in Lipidology, vol. 20, no. 4, pp. 265–274, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. R. J. Richter, G. P. Jarvik, and C. E. Furlong, “Paraoxonase 1 status as A risk factor for disease or exposure,” Advances in Experimental Medicine and Biology, vol. 660, pp. 29–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Kotani, S. Kimura, and A. Gugliucci, “Paraoxonase-1 and ischemia-modified albumin in patients with end-stage renal disease,” Journal of physiology and biochemistry, vol. 67, no. 3, pp. 437–441, 2011. View at Scopus
  16. C. M. Uhlar and A. S. Whitehead, “Serum amyloid A, the major vertebrate acute-phase reactant,” European Journal of Biochemistry, vol. 265, no. 2, pp. 501–523, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Yamada, “Serum amyloid a (SAA): a concise review of biology, assay methods and clinical usefulness,” Clinical Chemistry and Laboratory Medicine, vol. 37, no. 4, pp. 381–388, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. V. L. King, J. Thompson, and L. R. Tannock, “Serum amyloid a in atherosclerosis,” Current Opinion in Lipidology, vol. 22, no. 4, pp. 302–307, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. P. J. W. H. Kappelle, J. Bijzet, B. P. Hazenberg, and R. P. F. Dullaart, “Lower serum paraoxonase-1 activity is related to higher serum amyloid a levels in metabolic syndrome,” Archives of Medical Research, vol. 42, no. 3, pp. 219–225, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. P. S. Mullenix, C. A. Andersen, and B. W. Starnes, “Atherosclerosis as inflammation,” Annals of Vascular Surgery, vol. 19, no. 1, pp. 130–138, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. Ungvari, R. Buffenstein, S. N. Austad, A. Podlutsky, G. Kaley, and A. Csiszar, “Oxidative stress in vascular senescence: lessons from successfully aging species,” Frontiers in Bioscience, vol. 13, no. 13, pp. 5056–5070, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Khansari, Y. Shakiba, and M. Mahmoudi, “Chronic inflammation and oxidative stress as A major cause of age-related diseases and cancer,” Recent Patents on Inflammation and Allergy Drug Discovery, vol. 3, no. 1, pp. 73–80, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. M. J. Haas and A. D. Mooradian, “Inflammation, high-density lipoprotein and cardiovascular dysfunction,” Current Opinion in Infectious Diseases, vol. 24, no. 3, pp. 265–272, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. E. A. Fisher, J. E. Feig, B. Hewing, S. L. Hazen, and J. D. Smith, “High density lipoprotein and it's dysfunction,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 12, pp. 2813–2820, 2012. View at Publisher · View at Google Scholar
  25. B. J. Van Lenten, S. Y. Hama, F. C. De Beer et al., “Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures,” Journal of Clinical Investigation, vol. 96, no. 6, pp. 2758–2767, 1995. View at Scopus
  26. Y. Kumon, Y. Nakauchi, T. Suehiro et al., “Proinflammatory cytokines but not acute phase serum amyloid A or C-reactive protein, downregulate paraoxonase 1 (PON1) expression by HepG2 cells,” Amyloid, vol. 9, no. 3, pp. 160–164, 2002. View at Scopus
  27. V. G. Cabana, C. A. Reardon, N. Feng, S. Neath, J. Lukens, and G. S. Getz, “Serum paraoxonase: effect of the apolipoprotein composition of HDL and the acute phase response,” Journal of Lipid Research, vol. 44, no. 4, pp. 780–792, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Y. Han, T. Chiba, J. S. Campbell et al., “Reciprocal and coordinate regulation of serum amyloid A versus apolipoprotein A-I and paraoxonase-1 by inflammation in murine hepatocytes,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 8, pp. 1806–1813, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. G. Guo, C. Li, J. K. Zhong, Y. Tu, and D. Xie, “Laboratory investigation of dysfunctional HDL,” Chemistry and Physics of Lipids, vol. 165, no. 1, pp. 32–37, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Mackness, R. Hunt, P. N. Durrington, and M. I. Mackness, “Increased immunolocalization of paraoxonase, clusterin, and apolipoprotein A-I in the human artery wall with the progression of atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 17, no. 7, pp. 1233–1238, 1997. View at Scopus
  31. O. Rozenberg, M. Rosenblat, R. Coleman, D. M. Shih, and M. Aviram, “Paraoxonase (PON1) deficiency is associated with increased macrophage oxidative stress: studies in PON1-knockout mice,” Free Radical Biology and Medicine, vol. 34, no. 6, pp. 774–784, 2003. View at Publisher · View at Google Scholar · View at Scopus